Swelling of 316L austenitic stainless steel induced by plasma nitriding

被引:0
|
作者
J. C. Stinville
C. Templier
P. Villechaise
L. Pichon
机构
[1] CNRS UPR 3346,Institut PPRIME
[2] Université de Poitiers & ENSMA,undefined
[3] Ecole de Technologie Supérieure,undefined
来源
关键词
Residual Stress; Nitrided; Austenitic Stainless Steel; Grain Orientation; Nitrided Layer;
D O I
暂无
中图分类号
学科分类号
摘要
Swelling of 316L austenitic stainless steel plasma nitrided at 400°C under floating potential has been investigated using electron back scattered diffraction and white-light interferometry. Swelling of individual grains strongly depends on their crystallographic orientation, similarly to the thickness of the nitrided layer. After 1 h of treatment, swelling is maximum for the 〈001〉 oriented grains and minimum for the 〈111〉 oriented grains. After 8 and 33 h of nitriding, the maximum of swelling is observed in the grains having their normal direction at about 15° from the 〈001〉 orientation. These results are discussed on the basis of plastic strain after comparison with calculated swellings of the 〈001〉 and 〈111〉 oriented grains, using the thickness of the nitrided layer deduced from the trapping–detrapping diffusion model and a rough estimation of the plastic strain. The satisfactory agreement between experimental and calculated swellings supports the idea that swelling results from the lattice expansion due to the incorporation of nitrogen plus an elastic strain and a plastic strain. For individual grains of the 316L matrix, nitriding leads to a tensile-like elongation of high magnitude (around 20%) and it might be the origin of the lattice rotations which were previously observed after nitriding.
引用
收藏
页码:5503 / 5511
页数:8
相关论文
共 50 条
  • [1] Swelling of 316L austenitic stainless steel induced by plasma nitriding
    Stinville, J. C.
    Templier, C.
    Villechaise, P.
    Pichon, L.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (16) : 5503 - 5511
  • [2] Lattice rotation induced by plasma nitriding in a 316L polycrystalline stainless steel
    Stinville, J. C.
    Villechaise, P.
    Templier, C.
    Riviere, J. P.
    Drouet, M.
    ACTA MATERIALIA, 2010, 58 (08) : 2814 - 2821
  • [3] Active screen plasma nitriding of AISI 316L austenitic stainless steel at different potentials
    Zhao, C.
    Wang, Y.
    Han, L.
    SURFACE ENGINEERING, 2008, 24 (03) : 188 - 192
  • [4] On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel
    Mingolo, N.
    Tschiptschin, A. P.
    Pinedo, C. E.
    SURFACE & COATINGS TECHNOLOGY, 2006, 201 (07): : 4215 - 4218
  • [5] Low-Temperature Plasma Nitriding of Sintered PIM 316L Austenitic Stainless Steel
    Mendes, Aercio Fernando
    Scheuer, Cristiano Jose
    Joanidis, Ioanis Labhardt
    Cardoso, Rodrigo Perito
    Mafra, Marcio
    Klein, Aloisio Nelmo
    Brunatto, Silvio Francisco
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2014, 17 : 100 - 108
  • [6] Surface modification of 316L stainless steel with plasma nitriding
    Yetim, A. F.
    Yildiz, F.
    Alsaran, A.
    Celik, A.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2008, 46 (02): : 105 - 116
  • [7] Plasma nitriding of AISI 316L austenitic stainless steels at anodic potential
    Li, Y.
    Wang, L.
    Xu, J.
    Zhang, D.
    SURFACE & COATINGS TECHNOLOGY, 2012, 206 (8-9): : 2430 - 2437
  • [8] Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding
    Moskalioviene, T.
    Galdikas, A.
    Riviere, J. P.
    Pichon, L.
    SURFACE & COATINGS TECHNOLOGY, 2011, 205 (10): : 3301 - 3306
  • [9] Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution
    Stinville, J. C.
    Villechaise, P.
    Templier, C.
    Riviere, J. P.
    Drouet, M.
    SURFACE & COATINGS TECHNOLOGY, 2010, 204 (12-13): : 1947 - 1951
  • [10] Modeling of the lattice rotations induced by plasma nitriding of 316L polycrystalline stainless steel
    Stinville, J. C.
    Cormier, J.
    Templier, C.
    Villechaise, P.
    ACTA MATERIALIA, 2015, 83 : 10 - 16