Real Clifford Algebras as Tensor Products over Centers

被引:0
作者
Yuanfeng Song
Xiankun Du
Wuming Li
机构
[1] Jilin University,School of Mathematics
[2] Tonghua Normal University,School of Mathematics
来源
Advances in Applied Clifford Algebras | 2013年 / 23卷
关键词
Clifford algebra; periodicity; tensor product;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\ell_{p,q}}$$\end{document} the Clifford algebra on the real vector space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{p,q}}$$\end{document}. This paper gives a unified tensor product expression of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\ell_{p,q}}$$\end{document} by using the center of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\ell_{p,q}}$$\end{document}. The main result states that for nonnegative integers p, q, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p + q \equiv \varepsilon}$$\end{document} mod 2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$$\end{document} mod 8 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta = \lfloor i / 4 \rfloor}$$\end{document}.
引用
收藏
页码:607 / 613
页数:6
相关论文
共 5 条
[1]  
Albuquerque H.(2002)Clifford Algebras Obtained by Twisting of Group Algebras J. Pure Appl. Algebra 171 133-148
[2]  
Majid S.(2006)Canonical Bases for Real Representations of Clifford Algebras Linear Algebra Appl. 419 417-439
[3]  
Bilge A.H.(undefined)undefined undefined undefined undefined-undefined
[4]  
Koçak Ş.(undefined)undefined undefined undefined undefined-undefined
[5]  
Uǧuz S.(undefined)undefined undefined undefined undefined-undefined