Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}^{\varvec{r}}$$\end{document}-results of the stationary Navier–Stokes flows around a rotating obstacle

被引:0
作者
Dugyu Kim
机构
[1] Jeju National University,Department of Mathematics Education
关键词
Navier–Stokes flows; Weak solution; Very weak solution; Exterior; Rotation; 35D35; 35Q30; 76D07;
D O I
10.1007/s00033-023-02083-w
中图分类号
学科分类号
摘要
In this article, we study the stationary motion of an incompressible Navier–Stokes flow past a rotating body R3\Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{3} \setminus \Omega $$\end{document}, which is also translating about the x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document}-axis with nonzero constant velocity -ke1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- k e_{1}$$\end{document}. Assume that the body rotates with a constant angular velocity ω=|ω|e1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = |\omega | e_{1}$$\end{document} and the external body force is given by f=divF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = \textrm{div}\, F$$\end{document}. Our main purpose is to prove the existence of a weak solution u satisfying ∇u∈Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u \in L^{r}(\Omega )$$\end{document} for arbitrary large F∈Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \in L^{r}(\Omega )$$\end{document}, 3/2≤r≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3/2 \le r \le 2$$\end{document}, provided that the flux of ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{b}$$\end{document} is sufficiently small with respect to the viscosity ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. This is obtained by the regularity result that mainly use localization procedure. In the end, we also present an optimal existence theorem for strong and very weak solutions.
引用
收藏
相关论文
共 33 条
[1]  
Amrouche C(2006)On the Oseen problem in three-dimensional exterior domains Anal. Appl. (Singap.) 4 133-162
[2]  
Razafison U(2016)The Oseen and Navier-Stokes equations in a non-solenoidal framework Math. Methods Appl. Sci. 39 5066-5090
[3]  
Amrouche C(2006)An Tohoku Math. J. (2) 58 129-147
[4]  
Rodríguez-Bellido MA(2013)-analysis of viscous fluid flow past a rotating obstacle Proc. Am. Math. Soc. 141 573-583
[5]  
Farwig R(2013)A simple proof of Proc. Am. Math. Soc. 141 1313-1322
[6]  
Galdi GP(2007)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions Arch. Ration. Mech. Anal. 184 371-400
[7]  
Kyed M(2012)A simple proof of Manuscr. Math. 138 315-345
[8]  
Galdi GP(2013)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions Math. Ann. 356 653-681
[9]  
Kyed M(1999)The steady motion of a Navier-Stokes liquid around a rigid body Arch. Ration. Mech. Anal. 150 307-348
[10]  
Galdi GP(2018)On the stationary Navier-Stokes flows around a rotating body Math. Methods Appl. Sci. 41 4506-4527