Mean-Field Limit and Phase Transitions for Nematic Liquid Crystals in the Continuum

被引:0
作者
Sven Bachmann
François Genoud
机构
[1] Mathematisches Institut der Universität München,Delft Institute of Applied Mathematics
[2] Delft University of Technology,undefined
来源
Journal of Statistical Physics | 2017年 / 168卷
关键词
Liquid crystals; Scaling limit; Phase transition;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss thermotropic nematic liquid crystals in the mean-field regime. In the first part of this article, we rigorously carry out the mean-field limit of a system of N rod-like particles as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}, which yields an effective ‘one-body’ free energy functional. In the second part, we focus on spatially homogeneous systems, for which we study the associated Euler–Lagrange equation, with a focus on phase transitions for general axisymmetric potentials. We prove that the system is isotropic at high temperature, while anisotropic distributions appear through a transcritical bifurcation as the temperature is lowered. Finally, as the temperature goes to zero we also prove, in the concrete case of the Maier–Saupe potential, that the system converges to perfect nematic order.
引用
收藏
页码:746 / 771
页数:25
相关论文
共 83 条
[1]  
Ball J(2010)Nematic liquid crystals: from Maier–Saupe to a continuum theory Mol. Cryst. Liq. Cryst. 525 1-11
[2]  
Majumdar A(1992)A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description Comm. Math. Phys. 143 501-525
[3]  
Caglioti E(2009)Discrete-to-continuum limits for strain-alignment-coupled systems: magnetostrictive solids, ferroelectric crystals and nematic elastomers Netw. Heterog. Media 4 667-708
[4]  
Lions P(2004)Asymptotic states of a Smoluchowski equation Arch. Ration. Mech. Anal. 174 365-384
[5]  
Marchioro C(1971)Bifurcation from simple eigenvalues J. Funct. Anal. 8 321-340
[6]  
Pulvirenti M(2013)The nematic phase of a system of long hard rods Comm. Math. Phys. 323 143-175
[7]  
Cicalese M(1976)Equilibrium theory of liquid crystals Adv. Liq. Cryst. 2 233-298
[8]  
De Simone A(1990)Liquid crystals with variable degree of orientation Arch. Ration. Mech. Anal. 113 97-120
[9]  
Zeppieri C(1980)Equilibrium states for mean field models J. Math. Phys. 21 355-358
[10]  
Constantin P(2005)Critical points of the Onsager functional on a sphere Nonlinearity 18 2565-2580