Rheological properties and anticorrosion performance of graphene oxide- and reduced graphene oxide-based nanocomposites

被引:0
|
作者
Kerim Yapici
Secil Peker
机构
[1] Süleyman Demirel University,Department of Chemical Engineering
关键词
Graphene oxide; Reduced graphene oxide; Rheology; Anticorrosion performance; Nanocomposite coating;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) nanoparticles on the corrosion protection performance of nanocomposite coatings containing particle mass concentration ranging from 0.25% to 1% in epoxy matrix was investigated in detail. In addition, the effect of the distribution of GO and rGO nanoparticles in epoxy matrix on the corrosion performance and rheology of the coatings was studied by mixing the nanocomposites with the ball milling for 24 and 48 h. The surface morphology of coatings was analyzed by field-emission scanning microscope. It was observed that oxygen groups in the graphene structure, the effective distribution of nanoparticles in the matrix and the amount of nanoparticle doped affected the corrosion protection performance. The best corrosion protection performance among all nanocomposite coatings was 0.75 wt% rGO/epoxy nanocomposite, which was milled for 48 h. GO/epoxy nanocomposite coatings exhibit hydrophilic properties in all mass fractions and mixing times. However, adding 0.5 and 0.75 wt% of rGO and milling 48 h resulted in hydrophobic nanocomposites. rGO nanoparticles had the best dispersion performance at 0.75 wt% concentration in the epoxy. The nonlinear rheological measurements revealed that rGO/epoxy nanocomposites exhibit non-Newtonian shear thinning behavior at the studied mass concentrations and milling times as opposed to the nanocomposites containing GO particles.
引用
收藏
页码:193 / 205
页数:12
相关论文
共 50 条
  • [1] Rheological properties and anticorrosion performance of graphene oxide- and reduced graphene oxide-based nanocomposites
    Yapici, Kerim
    Peker, Secil
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2020, 17 (01) : 193 - 205
  • [2] Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers
    Bellier, Naline
    Baipaywad, Phornsawat
    Ryu, Naeun
    Lee, Jae Young
    Park, Hansoo
    BIOMATERIALS RESEARCH, 2022, 26 (01)
  • [3] Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers
    Naline Bellier
    Phornsawat Baipaywad
    Naeun Ryu
    Jae Young Lee
    Hansoo Park
    Biomaterials Research, 26
  • [4] Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications
    Razaq, Aamir
    Bibi, Faiza
    Zheng, Xiaoxiao
    Papadakis, Raffaello
    Jafri, Syed Hassan Mujtaba
    Li, Hu
    MATERIALS, 2022, 15 (03)
  • [5] Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites
    Xiangyang Xu
    Jing Shen
    Jingyu Qin
    Huimin Duan
    Guangyu He
    Haiqun Chen
    JOM, 2019, 71 : 294 - 301
  • [6] Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites
    Xu, Xiangyang
    Shen, Jing
    Qin, Jingyu
    Duan, Huimin
    He, Guangyu
    Chen, Haiqun
    JOM, 2019, 71 (01) : 294 - 301
  • [7] Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine
    Raslan, Ahmed
    Saenz del Burgo, Laura
    Ciriza, Jesus
    Luis Pedraz, Jose
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 580
  • [8] Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
    Smith, Andrew T.
    LaChance, Anna Marie
    Zeng, Songshan
    Liu, Bin
    Sun, Luyi
    NANO MATERIALS SCIENCE, 2019, 1 (01) : 31 - 47
  • [9] Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
    ANDrew T.Smith
    Anna Marie La Chance
    Songshan Zeng
    Bin Liu
    Luyi Sun
    Nano Materials Science, 2019, 1 (01) : 31 - 47
  • [10] A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites
    Phiri, Josphat
    Johansson, Leena-Sisko
    Gane, Patrick
    Maloney, Thad
    COMPOSITES PART B-ENGINEERING, 2018, 147 : 104 - 113