Existence of multi-peak solutions for p-Laplace problems in ℝN

被引:0
作者
Zhen-hui Zhang
Hao-yuan Xu
机构
[1] Hebei University of Engineering,College of Science
[2] Huazhong University of Science and Technology,School of Mathematics and Statistics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2015年 / 31卷
关键词
-Laplace problem; existence of solutions; variational method; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the p-Laplace problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ - {\varepsilon ^p}{\Delta _p}u + V\left( x \right){u^{p - 1}} = {u^{q - 1}},u{\text{ > }}0$\end{document} in RN where 2 ≤ p < N, ε > 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p{\text{ < }}q{\text{ < }}p* = \frac{{Np}}{{N - p}}$\end{document}. V is a non-negative function satisfying certain conditions and ε is a small parameter. We obtain the existence of solutions concentrated near set consisting of disjoint components of zero set of V under certain assumptions on V when ε > 0 is small.
引用
收藏
页码:1061 / 1072
页数:11
相关论文
共 21 条
[1]  
Byeon J.(2002)Standing waves with a critical frequency for nonlinear Schrödinger equations Arch. Rational Mech. Anal. 165 295-316
[2]  
Wang Z.Q.(2004)Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations J. Differential Equations 203 292-312
[3]  
Cao D.(1991)Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials J. Amer. Math. Soc. 4 693-727
[4]  
Noussair E.S.(2003)Real analyticity and non-degeneracy Math. Ann. 325 369-392
[5]  
Coti Zelati V.(1997)Semi-classical states for nonlinear Schrödinger equations J. Funct. Anal. 149 245-265
[6]  
Rabinowitz P.H.(1998)Multi-peak bound states for nonlinear Schrödinger equations Ann. Inst. H. Poincaré, Anal. Nonlinéaire 15 127-149
[7]  
Dancer E.N.(1983)C Nonlinear Anal. 7 827-850
[8]  
del Pino M.(1996) local regularity of weak solutions of degenerate elliptic equations Comm. Partial Differential Equations 21 787-820
[9]  
Felmer M.(2004)Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method Proc. Amer. Math. Soc. 132 1005-1011
[10]  
del Pino M.(2004)Strong comparison principle for solutions of quasilinear equations J. Differential Equations 196 1-66