We introduce numerical schemes for computing distances and shortest paths with respect to several planar paths models, featuring curvature penalization and data-driven velocity: the Dubins car, the Euler/Mumford elastica, and a two variants of the Reeds–Shepp car. For that purpose, we design monotone and causal discretizations of the associated Hamilton–Jacobi–Bellman PDEs, posed on the three-dimensional domain R2×S1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb R}^2 \times {\mathbb S}^1$$\end{document}. Our discretizations involve sparse, adaptive and anisotropic stencils on a cartesian grid, built using techniques from lattice geometry. A convergence proof is provided, in the setting of discontinuous viscosity solutions. The discretized problems are solvable in a single pass using a variant of the fast-marching algorithm. Numerical experiments illustrate the applications of our schemes in motion planning and image segmentation.