Elliptic function soliton solutions of the higher-order nonlinear dispersive Kundu–Eckhaus dynamical equation with applications and stability

被引:0
作者
Dianchen Lu
Aly R. Seadawy
Muhammad Arshad
机构
[1] Jiangsu University,Faculty of Science
[2] Taibah University,Mathematics Department, Faculty of Science
[3] Beni-Suef University,Mathematics Department, Faculty of Science
来源
Indian Journal of Physics | 2021年 / 95卷
关键词
Improved simple equation method; Modified extended SEM; Generalized exp; -expansion technique; Modified extended mapping technique; Kundu–Eckhaus equation; Solitons; Periodic solutions; 02.30.Jr; 05.45.Yv; 47.10.A; 47.35.+i; 47.35.Fg;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ the four mathematical methods, namely improved simple equation method (SEM), modified extended SEM, generalized exp(-Φ(ξ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Phi (\xi ))$$\end{document}-expansion technique and modified extended mapping technique, and attain exact solutions in various forms of Kundu–Eckhaus (K–E) equation. The wave solutions in the forms of bright and dark solitons, periodic solitary wave, kink and anti-kink soliton, trigonometric and hyperbolic trigonometric function and rational function are achieved. The movements of few results are presented graphically, which are useful to mathematician and physician for understanding the complex phenomena. The standard linear stability analysis is employed to examine the stability of the equation. This shows that exact solutions are stable. The results obtained are novel in nature and have good potential application values. The results demonstrate that these techniques are simple, effective and more powerful to solve nonlinear evolution equations.
引用
收藏
页码:691 / 704
页数:13
相关论文
共 101 条
[1]  
Soto-Crespo JM(2014)Solitary wave solutions and modulation instability analysis of the nonlinear Schrödinger equation with higher order dispersion and nonlinear terms Phys. Rev. E 90 032902-1149
[2]  
Devine N(2014)undefined Phys. Scr. 89 095210-144
[3]  
Hoffmann NP(2019)undefined Resul. Phys. 7 1143-229
[4]  
Akhmediev N(2017)undefined Optik 140 136-131
[5]  
Wang X(2017)undefined Eur. Phys. J. Plus 132 518:12-393
[6]  
Yang B(2018)undefined Optik 161 221-49
[7]  
Chen Y(2015)undefined Phys. A 439 124-3568
[8]  
Yang Y(2018)undefined Int. J. Comput. Methods 15 1850017-465210
[9]  
Tariq Kalim Ul-Haq(2006)undefined Phys. Script. 74 384-242
[10]  
Seadawy Aly(2017)undefined Optik 138 40-1721