Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato

被引:0
|
作者
Fangfang Mu
Hao Zheng
Qiaorui Zhao
Mingku Zhu
Tingting Dong
Lei Kai
Zongyun Li
机构
[1] Jiangsu Normal University,Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science
[2] Jiangsu Normal University,The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences
来源
关键词
Abiotic tress; Genome-wide analysis; RNA helicase; Sweetpotato;
D O I
暂无
中图分类号
学科分类号
摘要
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
引用
收藏
相关论文
共 50 条
  • [1] Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato
    Mu, Fangfang
    Zheng, Hao
    Zhao, Qiaorui
    Zhu, Mingku
    Dong, Tingting
    Kai, Lei
    Li, Zongyun
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [2] Genome-wide systematic survey and analysis of NAC transcription factor family and their response to abiotic stress in sweetpotato
    Guo, Fen
    Liu, Siyuan
    Zhang, Chengbin
    Dong, Tingting
    Meng, Xiaoqing
    Zhu, Mingku
    SCIENTIA HORTICULTURAE, 2022, 299
  • [3] Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii
    Chen, Jie
    Zhang, Yujuan
    Liu, Jubo
    Xia, Minxuan
    Wang, Wei
    Shen, Fafu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03) : 4635 - 4656
  • [4] A genome-wide analysis of the RNA helicase gene family in Solanum lycopersicum
    Xu, Ruirui
    Zhang, Shizhong
    Lu, Longtao
    Cao, Hui
    Zheng, Chengchao
    GENE, 2013, 513 (01) : 128 - 140
  • [5] A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato
    Siyuan Liu
    Chengbin Zhang
    Fen Guo
    Qing Sun
    Jing Yu
    Tingting Dong
    Xin Wang
    Weihan Song
    Zongyun Li
    Xiaoqing Meng
    Mingku Zhu
    BMC Plant Biology, 22
  • [6] A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato
    Liu, Siyuan
    Zhang, Chengbin
    Guo, Fen
    Sun, Qing
    Yu, Jing
    Dong, Tingting
    Wang, Xin
    Song, Weihan
    Li, Zongyun
    Meng, Xiaoqing
    Zhu, Mingku
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [7] Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress
    Cui, Xiaoyue
    Zhang, Pingying
    Hu, Yafan
    Chen, Chengcheng
    Liu, Qiying
    Guan, Pingyin
    Zhang, Jianxia
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 165 : 57 - 70
  • [8] Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa
    Li, Xiaohong
    Wang, Xiaotong
    Ma, Xuxia
    Cai, Wenqi
    Liu, Yaling
    Song, Wenxue
    Fu, Bingzhe
    Li, Shuxia
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [9] Correction: A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato
    Siyuan Liu
    Chengbin Zhang
    Fen Guo
    Qing Sun
    Jing Yu
    Tingting Dong
    Xin Wang
    Weihan Song
    Zongyun Li
    Xiaoqing Meng
    Mingku Zhu
    BMC Plant Biology, 23
  • [10] Genome-Wide Identification of MsICE Gene Family in Medicago sativa and Expression Analysis of the Response to Abiotic Stress
    Wang, Baiji
    Liu, Qianning
    Xu, Wen
    Yuan, Yuying
    Tuluhong, Muzhapaer
    Yu, Jinqiu
    Cui, Guowen
    AGRONOMY-BASEL, 2024, 14 (09):