Convolutional codes: techniques of construction

被引:0
作者
Giuliano G. La Guardia
机构
[1] State University of Ponta Grossa (UEPG),Department of Mathematics and Statistics
来源
Computational and Applied Mathematics | 2016年 / 35卷
关键词
Convolutional codes; Techniques of construction; Combining classical codes; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show how to construct new convolutional codes from old ones by applying the well-known techniques: puncturing, extending, expanding, direct sum, the (u|u+v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{u}| \mathbf{u}+\mathbf{v})$$\end{document} construction and the product code construction. By applying these methods, several new families of convolutional codes can be constructed. As an example of code expansion, families of convolutional codes derived from classical Bose–Chaudhuri–Hocquenghem, character codes and Melas codes are constructed.
引用
收藏
页码:501 / 517
页数:16
相关论文
共 29 条
  • [1] Forney GD(1970)Convolutional codes I: algebraic structure IEEE Trans Inf Theory 16 720-738
  • [2] Gluesing-Luerssen H(2006)On doubly-cyclic convolutional codes Appl Algebra Eng Commun Comput 17 151-170
  • [3] Schmale W(2008)A matrix ring description for cyclic convolutional codes Adv Math Commun 2 55-81
  • [4] Gluesing-Luerssen H(2006)Strongly MDS convolutional codes IEEE Trans Inf Theory 52 584-598
  • [5] Tsang F-L(2000)On classes of convolutional codes that are not asymptotically catastrophic IEEE Trans Inf Theory 46 663-669
  • [6] Gluesing-Luerssen H(2009)Convolutional codes from units in matrix and group rings Int J Pure Appl Math 50 431-463
  • [7] Rosenthal J(2013)Nonbinary convolutional codes derived from group character codes Discret Math 313 2730-2736
  • [8] Smarandache R(2013)Convolutional codes derived from Melas codes Int J Pure Appl Math 85 1001-1008
  • [9] Hole KJ(2014)On negacyclic MDS-convolutional codes Linear Algebra Appl 448 85-96
  • [10] Hurley T(2014)On classical and quantum MDS-convolutional BCH codes IEEE Trans Inf Theory 60 304-312