LQP method with a new optimal step size rule for nonlinear complementarity problems

被引:0
作者
Ali Ou-yassine
Abdellah Bnouhachem
Fatimazahra Benssi
机构
[1] Ibn Zohr University,Laboratoire d’Ingénierie des Systémes et Technologies de l’Information, ENSA
[2] Nanjing University,School of Management Science and Engineering
来源
Journal of Inequalities and Applications | / 2015卷
关键词
nonlinear complementarity problems; co-coercive operator; logarithmic-quadratic proximal method;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat. 41(1):103-117, 2012), we propose a new modified LQP method by using a new optimal step size, where the underlying function F is co-coercive. Under some mild conditions, we show that the method is globally convergent. Some preliminary computational results are given to illustrate the efficiency of the proposed method.
引用
收藏
相关论文
共 42 条
  • [11] Guler O(1999)Interior proximal and multiplier methods based on second order homogenous Kernels Math. Oper. Res. 24 646-668
  • [12] Teboulle M(2006)A LQP based interior prediction-correction method for nonlinear complementarity problems J. Comput. Math. 24 33-44
  • [13] Auslender A(2006)A new inexactness criterion for approximate logarithmic-quadratic proximal methods Numer. Math., Theory Methods Appl. 15 74-81
  • [14] Teboulle M(2006)An LQP method for pseudomonotone variational inequalities J. Glob. Optim. 36 351-363
  • [15] Ben-Tiba S(2007)An extended LQP method for monotone nonlinear complementarity problems J. Optim. Theory Appl. 135 343-353
  • [16] Auslender A(2008)A new predictor-corrector method for pseudomonotone nonlinear complementarity problems Int. J. Comput. Math. 85 1023-1038
  • [17] Teboulle M(2010)An interior proximal point algorithm for nonlinear complementarity problems Nonlinear Anal. Hybrid Syst. 4 371-380
  • [18] Ben-Tiba S(2012)An approximate proximal point algorithm for nonlinear complementarity problems Hacet. J. Math. Stat. 41 103-117
  • [19] He BS(2009)A new logarithmic-quadratic proximal method for nonlinear complementarity problems Appl. Math. Comput. 215 695-706
  • [20] Liao LZ(2006)Modified proximal point methods for nonlinear complementarity problems J. Comput. Appl. Math. 197 395-405