LQP method with a new optimal step size rule for nonlinear complementarity problems

被引:0
作者
Ali Ou-yassine
Abdellah Bnouhachem
Fatimazahra Benssi
机构
[1] Ibn Zohr University,Laboratoire d’Ingénierie des Systémes et Technologies de l’Information, ENSA
[2] Nanjing University,School of Management Science and Engineering
来源
Journal of Inequalities and Applications | / 2015卷
关键词
nonlinear complementarity problems; co-coercive operator; logarithmic-quadratic proximal method;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat. 41(1):103-117, 2012), we propose a new modified LQP method by using a new optimal step size, where the underlying function F is co-coercive. Under some mild conditions, we show that the method is globally convergent. Some preliminary computational results are given to illustrate the efficiency of the proposed method.
引用
收藏
相关论文
共 42 条
  • [1] Lemke CE(1965)Bimatrix equilibrium point and mathematical programming Manag. Sci. 11 681-689
  • [2] Cottle RW(1968)Complementary pivot theory of mathematical programming Linear Algebra Appl. 1 103-125
  • [3] Dantzig GB(1997)Engineering and economic applications of complementary problems SIAM Rev. 39 669-713
  • [4] Ferris MC(1990)Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications Math. Program. 48 161-220
  • [5] Pang JS(1972)Determination approchée d’un point fixe d’une application pseudo-contractante C. R. Acad. Sci. Paris 274 163-165
  • [6] Harker PT(1976)Monotone operators and the proximal point algorithm SIAM J. Control Optim. 14 877-898
  • [7] Pang JS(1998)Approximate iterations in Bregman-function-based proximal algorithms Math. Program. 83 113-123
  • [8] Martinet B(1991)On the convergence of the proximal point algorithm for convex minimization SIAM J. Control Optim. 29 403-419
  • [9] Rockafellar RT(1997)Convergence of proximal-like algorithms SIAM J. Optim. 7 1069-1083
  • [10] Eckestein J(1999)A logarithmic-quadratic proximal method for variational inequalities Comput. Optim. Appl. 12 31-40