Cohomological dimension, self-linking, and systolic geometry

被引:0
作者
Alexander N. Dranishnikov
Mikhail G. Katz
Yuli B. Rudyak
机构
[1] University of Florida,Department of Mathematics
[2] Bar Ilan University,Department of Mathematics
来源
Israel Journal of Mathematics | 2011年 / 184卷
关键词
Fundamental Group; Homology Class; COHOMOLOGICAL Dimension; Massey Product; Systolic Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Given a closed manifold M, we prove the upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \over 2}(\dim M + {\rm{cd}}({{\rm{\pi }}_1}M))$$\end{document} for the number of systolic factors in a curvature-free lower bound for the total volume of M, in the spirit of M. Gromov’s systolic inequalities. Here “cd” is the cohomological dimension. We apply this upper bound to show that, in the case of a 4-manifold, the Lusternik-Schnirelmann category is an upper bound for the systolic category. Furthermore, we prove a systolic inequality on a manifold M with b1(M) = 2 in the presence of a nontrivial self-linking class of a typical fiber of its Abel-Jacobi map to the 2-torus.
引用
收藏
页码:437 / 453
页数:16
相关论文
共 70 条
[1]  
Babenko I.(1993)Asymptotic invariants of smooth manifolds Russian Academy of Sciences. Izvestiya Mathematics 41 1-38
[2]  
Babenko I.(2002)Loewner’s conjecture, Besicovich’s example, and relative systolic geometry Matematichskiĭ Sbornik 193 3-16
[3]  
Babenko I.(2006)Topologie des systoles unidimensionelles L’Enseignement Mathématique (2) 52 109-142
[4]  
Bangert V.(2007)Boundary case of equality in optimal Loewner-type inequalities Transactions of the American Mathematical Society 359 1-17
[5]  
Croke C.(2003)Stable systolic inequalities and cohomology products Communications on Pure and Applied Mathematics 56 979-997
[6]  
Ivanov S.(2004)An optimal Loewner-type systolic inequality and harmonic one-forms of constant norm Communications in Analysis and Geometry 12 703-732
[7]  
Katz M.(2009), Duke Mathematical Journal 146 35-70
[8]  
Bangert V.(1972) 4- Annales Scientifiques de l’École Normale Supérieure. Quatriéme Série 5 1-44
[9]  
Katz M.(1972)Du côté de chez Pu Annales Scientifiques de l’École Normale Supérieure. Quatriéme Série 5 241-260
[10]  
Bangert V.(1993)A l’ombre de Loewner Séminaire N. Bourbaki, exposé 771, Astérisque 216 279-310