Nilpotent groups related to an automorphism

被引:0
作者
Ahmad Erfanian
Masoumeh Ganjali
机构
[1] Ferdowsi University of Mashhad,Department of Mathematics
来源
Proceedings - Mathematical Sciences | 2018年 / 128卷
关键词
Nilpotent group; identity nilpotent group; absolute normal subgroup; Primary: 20F12; Secondary: 20D45;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to state some results on an α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-nilpotent group, which was recently introduced by Barzegar and Erfanian (Caspian J. Math. Sci. 4(2) (2015) 271–283), for any fixed automorphism α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} of a group G. We define an identity nilpotent group and classify all finitely generated identity nilpotent groups. Moreover, we prove a theorem on a generalization of the converse of the known Schur’s theorem. In the last section of the paper, we study absolute normal subgroups of a finite group.
引用
收藏
相关论文
共 19 条
[1]  
Abdollahi A(2007)Finite J. Algebra 312 876-879
[2]  
Barzegar R(2015)-groups of class Caspian J. Math. Sci. 4 271-283
[3]  
Erfanian A(2007) have non-inner automorphisms of order Am. Math. Mon. 114 917-923
[4]  
Christopher JH(2002)Nilpotency and solubility of groups relative to an automorphism J. Algebra 250 283-287
[5]  
Darren LR(2017)Automorphism of finite abelian groups Ricerche Mat. 66 407-413
[6]  
Deaconescu M(2006)Non-inner automorphisms of order Contemp. Math. 421 137-146
[7]  
Silberberg G(1966) of finite J. Algebra 4 1-2
[8]  
Ganjali M(1994)-groups J. Algebra 169 929-935
[9]  
Erfanian A(1901)Perfect groups and normal subgroups related to an automorphism Tran. AMS 2 259-272
[10]  
Garrison D(1902)Autocommutators and the autocommutator subgroup Trans. AMS 3 383-387