AMP-activated protein kinase in the control of cardiac metabolism and remodeling

被引:76
作者
Sandrine Horman
Christophe Beauloye
Jean-Louis Vanoverschelde
Luc Bertrand
机构
[1] Institut de Recherche Expérimentale et Clinique, Pole de Recherche Cardiovasculaire, IREC/CARD, 1200 Brussels
关键词
AMP-activated protein kinase; AMPK; Angiogenesis; Cardiac remodeling; Diabetic cardiomyopathy; Energy sensor; Extracellular matrix; Fibrosis; Heart failure; Hypertrophy; Insulin resistance; Metabolism; Myocardial infarction; Myocardial ischemia; Protein synthesis;
D O I
10.1007/s11897-012-0102-z
中图分类号
学科分类号
摘要
The AMP-activated protein kinase (AMPK) can be firstly considered as a cellular fuel gauge. AMPK rapidly senses energy deprivation and orchestrates a metabolic response to maintain an acceptable energy level required for cell survival under such adverse condition. Its protective role during myocardial ischemia has been deeply documented. More recently, it has been shown that the role of AMPK extends to several nonmetabolic effects related to other cardiac pathologies comprising diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. Here, we briefly review the different roles played by AMPK in the control of cardiac metabolism and function under normal and pathological conditions. The potential cardioprotective actions of AMPK and the relative importance of its energetic and nonmetabolic effects in these mechanisms are deeply discussed. © Springer Science+Business Media, LLC 2012.
引用
收藏
页码:164 / 173
页数:9
相关论文
共 96 条
[1]  
Viollet B., Athea Y., Mounier R., Et al., Ampk: Lessons from transgenic and knockout animals, Front Biosci, 14, pp. 19-44, (2009)
[2]  
Sakamoto K., Zarrinpashneh E., Budas G.R., Et al., Deficiency of lkb1 in heart prevents ischemia-mediated activation of ampkalpha2 but not ampkalpha1, Am J Physiol Endocrinol Metab, 290, (2006)
[3]  
Woods A., Dickerson K., Heath R., Hong S.-P., Momcilovic M., Johnstone S.R., Carlson M., Carling D., Ca<sup>2+</sup>/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, 2, 1, pp. 21-33, (2005)
[4]  
Hawley S.A., Pan D.A., Mustard K.J., Ross L., Bain J., Edelman A.M., Frenguelli B.G., Hardie D.G., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, 2, 1, pp. 9-19, (2005)
[5]  
Beauloye C., Bertrand L., Horman S., Et al., Ampk activation, a preventive therapeutic target in the transition from cardiac injury to heart failure, Cardiovasc Res, 90, pp. 224-33, (2011)
[6]  
Neubauer S., The failing heart - An engine out of fuel, New England Journal of Medicine, 356, 11, pp. 1140-1151, (2007)
[7]  
Bertrand L., Horman S., Beauloye C., Vanoverschelde J.-L., Insulin signalling in the heart, Cardiovascular Research, 79, 2, pp. 238-248, (2008)
[8]  
Treebak J.T., Glund S., Deshmukh A., Klein D.K., Long Y.C., Jensen T.E., Jorgensen S.B., Viollet B., Andersson L., Neumann D., Wallimann T., Richter E.A., Chibalin A.V., Zierath J.R., Wojtaszewski J.F.P., AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits, Diabetes, 55, 7, pp. 2051-2058, (2006)
[9]  
Kramer H.F., Witczak C.A., Fujii N., Jessen N., Taylor E.B., Arnolds D.E., Sakamoto K., Hirshman M.F., Goodyear L.J., Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle, Diabetes, 55, 7, pp. 2067-2076, (2006)
[10]  
Marsin A.S., Bertrand L., Rider M.H., Et al., Phosphorylation and activation of heart pfk-2 by ampk has a role in the stimulation of glycolysis during ischaemia, Curr Biol, 10, pp. 1247-55, (2000)