Higher spin entanglement entropy from CFT

被引:0
作者
Shouvik Datta
Justin R. David
Michael Ferlaino
S. Prem Kumar
机构
[1] Centre for High Energy Physics,Department of Physics
[2] Indian Institute of Science,undefined
[3] Swansea University,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Higher Spin Gravity; Field Theories in Lower Dimensions; Gauge-gravity correspondence; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential μ for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in μ in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, ℝ) × SL(3, ℝ) Chern-Simons theory. Our result suggests that the order μ2 correction to the entanglement entropy may be universal for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{W} $\end{document}-algebra CFTs with spinthree chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS3.
引用
收藏
相关论文
共 114 条
  • [1] Calabrese P(2004)Entanglement entropy and quantum field theory J. Stat. Mech. 06 06002-undefined
  • [2] Cardy JL(2005)Evolution of entanglement entropy in one-dimensional systems J. Stat. Mech. 04 04010-undefined
  • [3] Calabrese P(2004)Universality of entropy scaling in one dimensional gapless models Phys. Rev. Lett. 92 096402-undefined
  • [4] Cardy JL(2004)Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture J. Stat. Phys. 116 79-undefined
  • [5] Korepin VE(1998)The large-N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231-undefined
  • [6] Jin B-Q(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
  • [7] Korepin VE(2006)Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602-undefined
  • [8] Maldacena JM(2006)Aspects of holographic entanglement entropy JHEP 08 045-undefined
  • [9] Witten E(2002)AdS dual of the critical O(N) vector model Phys. Lett. B 550 213-undefined
  • [10] Ryu S(2010)Higher spin gauge theory and holography: the three-point functions JHEP 09 115-undefined