One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations

被引:0
作者
Ciprian Foias
Michael S. Jolly
Dan Lithio
Edriss S. Titi
机构
[1] Texas A&M University,Department of Mathematics
[2] Indiana University,Department of Mathematics
[3] Allstate,The Department of Computer Science and Applied Mathematics
[4] The Weizmann Institute of Science,undefined
来源
Journal of Nonlinear Science | 2017年 / 27卷
关键词
Navier–Stokes equations; Global attractors; Determining nodes; Determining form; Parametric determining form; Determining parameter; 35Q30; 76F02;
D O I
暂无
中图分类号
学科分类号
摘要
The evolution of a determining form for the 2D Navier–Stokes equations (NSE) which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and a chosen, fixed steady state, with a dynamical convexity parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which will be called the characteristic determining parameter. That is, we show a separation of variables formula for the solution of the determining form. Moreover, for a given initial trajectory, the dynamics of the infinite-dimensional determining form are equivalent to those of the characteristic determining parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} which is governed by a one-dimensional ODE. This one-dimensional ODE is used to show that if the solution to the determining form converges to the fixed state it does so no faster than O(τ-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1/2})$$\end{document}, otherwise it converges to a projection of some other trajectory in the global attractor of the NSE, but no faster than O(τ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau ^{-1})$$\end{document}, as τ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \rightarrow \infty $$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the evolutionary variable in determining form. The one-dimensional ODE is also exploited in computations which suggest that the one-sided convergence rate estimates are in fact achieved. The ODE is then modified to accelerate the convergence to an exponential rate. It is shown that the zeros of the scalar function that governs the dynamics of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which are called characteristic determining values, identify in a unique fashion the trajectories in the global attractor of the 2D NSE
引用
收藏
页码:1513 / 1529
页数:16
相关论文
共 43 条
  • [1] Azouani A(2014)Continuous data assimilation using general interpolant observables J. Nonlinear Sci. 24 277-304
  • [2] Olson E(1997)Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems Math. Comput. 66 1073-1087
  • [3] Titi ES(1989)Spectral barriers and inertial manifolds for dissipative partial differential equations J. Dyn. Differ. Equ. 1 45-73
  • [4] Cockburn B(1967)Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension Rend. Semin. Math. Univ. Padova 39 1-34
  • [5] Jones DA(1984)Determination of the solutions of the Navier–Stokes equations by a set of nodal values Math. Comput. 43 117-133
  • [6] Titi ES(1991)Determining nodes, finite difference schemes and inertial manifolds Nonlinearity 4 135-153
  • [7] Constantin P(1988)Inertial manifolds for nonlinear evolutionary equations J. Differ. Equ. 73 309-353
  • [8] Foias C(1989)Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations J. Dyn. Differ. Equ. 1 199-244
  • [9] Nicolaenko B(2014)Time analyticity with higher norm estimates for the 2D Navier–Stokes equations IMA J. Appl. Math. 80 766-810
  • [10] Temam R(2014)A unified approach to determining forms for the 2D Navier–Stokes equations—the general interpolants case Rus. Math. Surv. 69 177-200