The TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} perturbation and its geometric interpretation

被引:0
作者
Riccardo Conti
Stefano Negro
Roberto Tateo
机构
[1] Dipartimento di Fisica and Arnold-Regge Center,C.N. Yang Institute for Theoretical Physics
[2] Università di Torino and INFN,undefined
[3] Sezione di Torino,undefined
[4] New York Stony Brook,undefined
关键词
Bethe Ansatz; Integrable Field Theories;
D O I
10.1007/JHEP02(2019)085
中图分类号
学科分类号
摘要
Starting from the recently-discovered TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document}-perturbed Lagrangians, we prove that the deformed solutions to the classical EoMs for bosonic field theories are equivalent to the unperturbed ones but for a specific field-dependent local change of coordinates. This surprising geometric outcome is fully consistent with the identification of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document}-deformed 2D quantum field theories as topological JT gravity coupled to generic matter fields. Although our conclusion is valid for generic interacting potentials, it first emerged from a detailed study of the sine-Gordon model and in particular from the fact that solitonic pseudo-spherical surfaces embedded in ℝ3 are left invariant by the deformation. Analytic and numerical results concerning the perturbation of specific sine-Gordon soliton solutions are presented.
引用
收藏
相关论文
共 123 条
[71]  
Conti R(undefined)undefined undefined undefined undefined-undefined
[72]  
Iannella L(undefined)undefined undefined undefined undefined-undefined
[73]  
Negro S(undefined)undefined undefined undefined undefined-undefined
[74]  
Tateo R(undefined)undefined undefined undefined undefined-undefined
[75]  
Dei A(undefined)undefined undefined undefined undefined-undefined
[76]  
Sfondrini A(undefined)undefined undefined undefined undefined-undefined
[77]  
Dorey P(undefined)undefined undefined undefined undefined-undefined
[78]  
Tateo R(undefined)undefined undefined undefined undefined-undefined
[79]  
Bazhanov VV(undefined)undefined undefined undefined undefined-undefined
[80]  
Lukyanov SL(undefined)undefined undefined undefined undefined-undefined