Adapting myoelectric control in real-time using a virtual environment

被引:0
作者
Richard B. Woodward
Levi J. Hargrove
机构
[1] Shirley Ryan Ability Lab,Center for Bionic Medicine
[2] Northwestern University,Department of Physical Medicine & Rehabilitation
[3] Northwestern University,Department of Biomedical Engineering
来源
Journal of NeuroEngineering and Rehabilitation | / 16卷
关键词
Amputee; Electromyography; Upper-limb prostheses; Pattern recognition; Virtual rehabilitation; Virtual guided training; Serious gaming; Real-time adaptation; Myoelectric control;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 99 条
[1]  
Ziegler-Graham K(2008)Estimating the prevalence of limb loss in the United States: 2005 to 2050 Arch Phys Med Rehabil 89 422-429
[2]  
MacKenzie EJ(1957)Historical development of upper extremity prosthetics Orthop Prosthet Appl J 11 73-77
[3]  
Ephraim PL(2007)Upper-limb prosthetics: critical factors in device abandonment Am J Phys Med Rehabil 86 977-987
[4]  
Travison TG(2007)Upper limb prosthesis use and abandonment: a survey of the last 25 years Prosthetics Orthot Int 31 236-257
[5]  
Brookmeyer R(2016)Literature review on needs of upper limb prosthesis users Front Neurosci 10 1-14
[6]  
Wellerson TL(2003)A robust, real-time control scheme for multifunction myoelectric control IEEE Trans Biomed Eng 50 848-854
[7]  
Biddiss E(1982)EMG pattern analysis and classification for a prosthetic arm IEEE Trans Biomed Eng BME-29 403-412
[8]  
Chau T(2018)Evaluation of EMG pattern recognition for upper limb prosthesis control : a case study in comparison with direct myoelectric control J Neuroeng Rehabil 15 23-22
[9]  
Biddiss EA(2017)Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing PLoS One 12 1-651
[10]  
Chau TT(2012)Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees J Neuroeng Rehabil 9 74-278