Boundedness of the potential operators and their commutators in the local “complementary” generalized variable exponent Morrey spaces on unbounded sets

被引:0
|
作者
Canay Aykol
Xayyam A. Badalov
Javanshir J. Hasanov
机构
[1] Ankara University,Department of Mathematics
[2] Institute of Mathematics and Mechanics,undefined
[3] Azerbaijan State Oil and Industry University,undefined
来源
Annals of Functional Analysis | 2020年 / 11卷
关键词
Riesz potential; Fractional maximal operator; Maximal operator; Local “complementary” generalized variable exponent Morrey space; Hardy–Littlewood–Sobolev–Morrey type estimate; BMO space; 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a Sobolev–Spanne type ∁M{x0}p(·),ω(Ω)→∁M{x0}q(·),ω(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{p(\cdot ),\omega } (\varOmega )\rightarrow {\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{q(\cdot ),\omega } (\varOmega )$$\end{document}-theorem for the potential operators Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{\alpha }$$\end{document}, where ∁M{x0}p(·),ω(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{p(\cdot ),\omega }(\varOmega )$$\end{document} is local “complementary” generalized Morrey spaces with variable exponent p(x), ω(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (r)$$\end{document} is a general function defining the Morrey-type norm and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is an open unbounded subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}^n}$$\end{document}. In addition, we prove the boundedness of the commutator of potential operators [b,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,I^{\alpha }]$$\end{document} in these spaces. In all cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x,r)$$\end{document}, which do not assume any assumption on monotonicity of ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x,r)$$\end{document} in r.
引用
收藏
页码:423 / 438
页数:15
相关论文
共 50 条