Boundedness of the potential operators and their commutators in the local “complementary” generalized variable exponent Morrey spaces on unbounded sets

被引:0
|
作者
Canay Aykol
Xayyam A. Badalov
Javanshir J. Hasanov
机构
[1] Ankara University,Department of Mathematics
[2] Institute of Mathematics and Mechanics,undefined
[3] Azerbaijan State Oil and Industry University,undefined
来源
Annals of Functional Analysis | 2020年 / 11卷
关键词
Riesz potential; Fractional maximal operator; Maximal operator; Local “complementary” generalized variable exponent Morrey space; Hardy–Littlewood–Sobolev–Morrey type estimate; BMO space; 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a Sobolev–Spanne type ∁M{x0}p(·),ω(Ω)→∁M{x0}q(·),ω(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{p(\cdot ),\omega } (\varOmega )\rightarrow {\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{q(\cdot ),\omega } (\varOmega )$$\end{document}-theorem for the potential operators Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{\alpha }$$\end{document}, where ∁M{x0}p(·),ω(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\,^{^{\complement }}\!\mathcal M}_{\{x_0\}}^{p(\cdot ),\omega }(\varOmega )$$\end{document} is local “complementary” generalized Morrey spaces with variable exponent p(x), ω(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (r)$$\end{document} is a general function defining the Morrey-type norm and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is an open unbounded subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}^n}$$\end{document}. In addition, we prove the boundedness of the commutator of potential operators [b,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,I^{\alpha }]$$\end{document} in these spaces. In all cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x,r)$$\end{document}, which do not assume any assumption on monotonicity of ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x,r)$$\end{document} in r.
引用
收藏
页码:423 / 438
页数:15
相关论文
共 50 条
  • [1] Boundedness of the potential operators and their commutators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets
    Aykol, Canay
    Badalov, Xayyam A.
    Hasanov, Javanshir J.
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (02) : 423 - 438
  • [2] Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets
    Aykol, Canay
    Badalov, Xayyam A.
    Hasanov, Javanshir J.
    QUAESTIONES MATHEMATICAE, 2020, 43 (10) : 1487 - 1512
  • [3] Maximal, Potential, and Singular Operators in the Generalized Variable Exponent Morrey Spaces on Unbounded Sets
    Guliyev V.S.
    Samko S.G.
    Journal of Mathematical Sciences, 2013, 193 (2) : 228 - 248
  • [4] GENERALIZED WEIGHTED HARDY OPERATORS AND THEIR COMMUTATORS IN THE LOCAL "COMPLEMENTARY" GENERALIZED VARIABLE EXPONENT WEIGHTED MORREY SPACES
    Aykol, Canay
    Azizova, Zuleyxa O.
    Hasanov, Javanshir J.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 13 (01): : 14 - 27
  • [5] BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND SINGULAR OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY SPACES
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Samko, Stefan G.
    MATHEMATICA SCANDINAVICA, 2010, 107 (02) : 285 - 304
  • [6] Boundedness of some sublinear operators and their commutators on generalized local Morrey spaces
    Balakishiyev, A. S.
    Gadjieva, E. A.
    Gurbuz, F.
    Serbetci, A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (11) : 1620 - 1641
  • [7] Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces
    Vagif S. Guliyev
    Seymur S. Aliyev
    Turhan Karaman
    Parviz S. Shukurov
    Integral Equations and Operator Theory, 2011, 71
  • [8] Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces
    Guliyev, Vagif S.
    Aliyev, Seymur S.
    Karaman, Turhan
    Shukurov, Parviz S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) : 327 - 355
  • [9] Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Samko, Stefan G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 72 - 84
  • [10] Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
    Lijuan Wang
    Shuangping Tao
    Journal of Inequalities and Applications, 2014