Schatten-von Neumann Properties in the Weyl Calculus, and Calculus of Metrics on Symplectic Vector Spaces

被引:0
作者
Joachim Toft
机构
[1] Växjö University,Department of Mathematics and Systems Engineering
来源
Annals of Global Analysis and Geometry | 2006年 / 30卷
关键词
Hörmander symbols; Schatten-von Neumann classes; Weyl calculus; sharp Gårding's inequality; Embeddings;
D O I
暂无
中图分类号
学科分类号
摘要
Let swp be the set of all a ∈ ℓ such that aw(x, D) is Schatten p-operator on L2. Then we prove the following: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(m,g)\subseteq s_p^w$$\end{document} iff \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in L^p$$\end{document}. Furthermore, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\cap S(m,g)\subseteq s_p^w$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_g^{N/2}m\in L^p$$\end{document}. Consequently, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^r_{\rho, \delta}\cap L^\infty \subseteq s^w_\infty$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta <\rho \le 1$$\end{document};if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z,\zeta )=\sum \lambda _j(z_j^2+\zeta _j^2)$$\end{document}, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(z,\zeta )=\sum \lambda _j^\alpha (z_j^2+\zeta _j^2)$$\end{document} is symplectically invariantly defined. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1\le \alpha \le 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g\le g^{\sigma}$$\end{document} is slowly varying (and σ-temperate), then the same is true for G;a generalization of sharp Gårding's inequality.
引用
收藏
页码:169 / 209
页数:40
相关论文
共 31 条
[1]  
Bony J.M.(1994)Espaces functionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math France 122 77-118
[2]  
Chemin J.Y.(1989)Quantification asymptotique et microlocalisations d'Ordre supérieur I. Ann. Sci. Éc Norm. Sup. 22 377-433
[3]  
Bony J.M.(1999)L J. Funct. Anal. 165 173-204
[4]  
Lerner N.(1983) Estimates for Weyl quantization Indiana Univ. Math. J. 32 801-808
[5]  
Boulkhemair A.(1986)Interpolation of Sobolev spaces. The real method Ark. Mat. 24 59-79
[6]  
Calderón C.P.(1978)The Weyl calculus with locally temperate metrics and weights Nat. Acad. Sci. 75 4673-4674
[7]  
Milman M.(1999)On positivity of pseudo-differential operators Integral Equations Operator Theory 34 439-457
[8]  
Dencker N.(1997)Modulation spaces and pseudo-differential operators J. Funct. Anal. 150 426-452
[9]  
Feffermann C.L.(2001)Singular values of compact pseuodifferential operators Ark. Mat. 39 311-338
[10]  
Phong D.H.(1979)Melin–Hörmander inequality in a Wiener type pseudo-differential algebra Comm. Pure Appl. Math. 32 359-443