Application of tetragonal curves to coupled Boussinesq equations

被引:13
作者
Geng, Xianguo [1 ]
Jia, Minxin [1 ]
Xue, Bo [1 ]
Zhai, Yunyun [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Tetragonal curve; Coupled Boussinesq equation; Baker-Akhiezer function; Riemann theta function; Algebro-geometric solutions; ALGEBRO-GEOMETRIC SOLUTIONS; N-SOLITON SOLUTION; SCHRODINGER-EQUATION; INVERSE SCATTERING; PERIODIC-SOLUTIONS; TODA; SPECTRUM; WAVES;
D O I
10.1007/s11005-024-01780-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hierarchy of coupled Boussinesq equations related to a 4x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix spectral problem is derived by using the zero-curvature equation and Lenard recursion equations. The characteristic polynomial of the Lax matrix is employed to introduce the associated tetragonal curve and Riemann theta functions. The detailed theory of resulting tetragonal curves is established by exploring the properties of Baker-Akhiezer functions and a class of meromorphic functions. The Abel map and Abelian differentials are used to precisely determine the linearization of various flows. Finally, algebro-geometric solutions for the entire hierarchy of coupled Boussinesq equations are obtained.
引用
收藏
页数:42
相关论文
共 72 条
[1]  
Bulla W, 1998, MEM AM MATH SOC, V135, P1
[2]   Painleve analysis and Backlund transformations for coupled generalized Schrodinger-Boussinesq system [J].
Chowdhury, AR ;
Dasgupta, B ;
Rao, NN .
CHAOS SOLITONS & FRACTALS, 1998, 9 (10) :1747-1753
[3]   INVERSE SCATTERING AND THE BOUSSINESQ EQUATION [J].
DEIFT, P ;
TOMEI, C ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :567-628
[4]   A new approach to the Boussinesq hierarchy [J].
Dickson, R ;
Gesztesy, F ;
Unterkofler, K .
MATHEMATISCHE NACHRICHTEN, 1999, 198 :51-108
[5]   Algebro-geometric solutions of the Boussinesq hierarchy [J].
Dickson, R ;
Gesztesy, F ;
Unterkofler, K .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) :823-879
[6]  
DUBROVIN BA, 1974, ZH EKSP TEOR FIZ+, V67, P2131
[7]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[8]  
DUBROVIN BA, 1976, RUSS MATH SURV, V31, P59, DOI DOI 10.1070/RM1976V031N01ABEH001446
[9]   Abelian functions associated with a cyclic tetragonal curve of genus six [J].
England, M. ;
Eilbeck, J. C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
[10]   On the periodic Schrodinger-Boussinesq system [J].
Farah, Luiz Gustavo ;
Pastor, Ademir .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) :330-349