Hypotheses testing and posterior concentration rates for semi-Markov processes

被引:0
作者
I. Votsi
G. Gayraud
V. S. Barbu
N. Limnios
机构
[1] Institut du Risque et de l’Assurance,Laboratoire Manceau de Mathématiques
[2] Le Mans Université, LMM EA 3263
[3] Université de Technologie de Compiègne,Laboratoire de Mathématiques Raphaël Salem
[4] LMAC (Laboratory of Applied Mathematics of Compiègne),undefined
[5] Université de Rouen-Normandie,undefined
[6] UMR 6085,undefined
来源
Statistical Inference for Stochastic Processes | 2021年 / 24卷
关键词
Bayesian nonparametrics; Posterior concentration rates; Semi-Markov processes; Semi-Markov kernels; Robust statistical tests;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we adopt a nonparametric Bayesian approach and investigate the asymptotic behavior of the posterior distribution in continuous-time and general state space semi-Markov processes. In particular, we obtain posterior concentration rates for semi-Markov kernels. For the purposes of this study, we construct robust statistical tests between Hellinger balls around semi-Markov kernels and present some specifications to particular cases, including discrete-time semi-Markov processes and countable state space Markov processes. The objective of this paper is to provide sufficient conditions on priors and semi-Markov kernels that enable us to establish posterior concentration rates.
引用
收藏
页码:707 / 732
页数:25
相关论文
共 65 条
  • [1] Amewou-Atisso M(2003)Posterior consistency for semiparametric regression problems Bernoulli 9 291-312
  • [2] Ghosal S(2013)Bayesian optimal adaptive estimation using a sieve prior Scand J Stat 40 549-570
  • [3] Ghosh JK(2020)The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes Stat Inference Stoch Process 15 2375-2382
  • [4] Ramamoorthi RV(1986)Testing for Markov process VS semi-Markov process Commun Statist-Theor Meth 65 181-237
  • [5] Arbel J(1983)Approximation dans les espaces métriques et théorie de l’estimation Z Wahrsch Verw Gebiete 10 283-303
  • [6] Gayraud G(2007)Bayesian nonparametric estimation for reinforced Markov renewal processes Stat Inference Stoch Process 9 211-227
  • [7] Rousseau J(1999)A class of nonparametric Statistica Sinica 28 505-525
  • [8] Arfè A(2001)-sample tests for semi-Markov counting processes Scand J Stat 99 1050-1059
  • [9] Peluso S(2004)Goodness-of-fit tests for semi-Markov and Markov survival models with one intermediate state J Am Statist Assoc 1 123-187
  • [10] Muliere P(1969)Bayesian estimation of the spectral density of a time series Adv Appl Probab 24 739-752