Broken adaptive ridge regression for right-censored survival data

被引:0
作者
Zhihua Sun
Yi Liu
Kani Chen
Gang Li
机构
[1] Ocean University of China,Department of Mathematics
[2] Hong Kong University of Science and Technology,Department of Mathematics
[3] University of California,Biostatistics and Computational Medicine
来源
Annals of the Institute of Statistical Mathematics | 2022年 / 74卷
关键词
Accelerated failure time model; Grouping effect; penalization; Right censoring; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
Broken adaptive ridge (BAR) is a computationally scalable surrogate to L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document}-penalized regression, which involves iteratively performing reweighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} penalized regressions and enjoys some appealing properties of both L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} penalized regressions while avoiding some of their limitations. In this paper, we extend the BAR method to the semi-parametric accelerated failure time (AFT) model for right-censored survival data. Specifically, we propose a censored BAR (CBAR) estimator by applying the BAR algorithm to the Leurgan’s synthetic data and show that the resulting CBAR estimator is consistent for variable selection, possesses an oracle property for parameter estimation and enjoys a grouping property for highly correlation covariates. Both low- and high-dimensional covariates are considered. The effectiveness of our method is demonstrated and compared with some popular penalization methods using simulations. Real data illustrations are provided on a diffuse large-B-cell lymphoma data and a glioblastoma multiforme data.
引用
收藏
页码:69 / 91
页数:22
相关论文
共 109 条
[1]  
Akaike H(1974)A new look at the statistical model identification IEEE Transactions on Automatic Control 19 716-723
[2]  
Box JK(2016)Nucleophosmin: From structure and function to disease development BMC Molecular Biology 17 1-12
[3]  
Paquet N(2011)Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection The Annals of Applied Statistics 5 232-253
[4]  
Adams MN(1996)Heuristics of instability and stabilization in model selection Annals of Statistics 24 2350-2383
[5]  
Boucher D(1979)Linear regression with censored data Biometrika 66 429-436
[6]  
Bolderson E(2009)Regularized estimation for the accelerated failure time model Biometrics 65 394-404
[7]  
Obyrne KJ(2008)Extended Bayesian information criteria for model selection with large model spaces Biometrika 95 759-771
[8]  
Richard DJ(1972)Regression models and life-tables Journal of the Royal Statistical Society: Series B (Methodological) 34 187-220
[9]  
Breheny P(2015)Model-free feature screening for ultrahigh dimensional discriminant analysis Journal of the American Statistical Association 110 630-641
[10]  
Huang J(2018)Broken adaptive ridge regression and its asymptotic properties Journal of Multivariate Analysis 168 334-351