Multipliers and Duality for Group Actions

被引:0
作者
Andrew McKee
机构
[1] University of Białystok,Faculty of Mathematics
来源
Journal of Fourier Analysis and Applications | 2021年 / 27卷
关键词
Schur multiplier; Herz–Schur multiplier; Group action; Crossed product; Coaction; 46L07; 47L65;
D O I
暂无
中图分类号
学科分类号
摘要
We define operator-valued Schur and Herz–Schur multipliers in terms of module actions, and show that the standard properties of these multipliers follow from well-known facts about these module actions and duality theory for group actions. These results are applied to study the Herz–Schur multipliers of an abelian group acting on its Pontryagin dual: it is shown that a natural subset of these Herz–Schur multipliers can be identified with the classical Herz–Schur multipliers of the direct product of the group with its dual group.
引用
收藏
相关论文
共 24 条
[1]  
Anantharaman-Delaroche C(1987)Systèmes dynamiques non commutatifs et moyennabilité Math. Ann. 279 297-315
[2]  
Bédos E(2015)Fourier series and twisted J. Fourier Anal. Appl. 21 32-75
[3]  
Conti R(2019)-crossed products Taiwan. J. Math. 23 1175-1199
[4]  
Blasco O(1984)Schur product with operator-valued entries Boll. Un. Mat. Ital. A (6) 3 297-302
[5]  
García-Bayona I(1985)Herz–Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group Am. J. Math. 107 455-500
[6]  
Bożejko M(2012)Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups Integr. Equ. Oper. Theory 73 431-454
[7]  
Fendler G(1974)A Hilbert module approach to the Haagerup property Ann. Inst. Fourier (Grenoble) 24 145-157
[8]  
De Cannière J(1992)Une généralisation de la notion de transformée de Fourier–Stieltjes Colloq. Math. 63 311-313
[9]  
Haagerup U(2009)A characterization of completely bounded multipliers of Fourier algebras Int. J. Math. 20 377-400
[10]  
Dong Z(2005)A representation theorem for locally compact quantum groups Canad. Math. Bull. 48 97-111