Basis Properties in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{L}}_{{\varvec{p}}}$$\end{document} of Root Functions of Sturm–Liouville Problem with Spectral Parameter-Dependent Boundary Conditions

被引:0
作者
Ziyatkhan S. Aliyev
Aida A. Dunyamaliyeva
Yashar T. Mehraliyev
机构
[1] Baku State University,Department of Mathematical Analysis
[2] NAS of Azerbaijan,Department of Differential Equations Institute of Mathematics and Mechanics
[3] NAS of Azerbaijan,Department of Functional Analysis Institute of Mathematics and Mechanics
[4] Baku State University,Department of Differential Equations
关键词
Eigenvalue; root functions; spectral parameter in boundary conditions; Pontryagin space; basis properties of root functions; Primary 34B05; 34B08; 34B24; 34L10; Secondary 35P10; 47AO5; 47A75;
D O I
10.1007/s00009-017-0933-7
中图分类号
学科分类号
摘要
In this paper, we consider the Sturm–Liouville problem with spectral parameter in the boundary conditions. We associate this problem with a self-adjoint operator in the Pontryagin space Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{2}$$\end{document}. Using this operator-theoretic formulation and analytic methods, we study the basis properties in the space Lp(0,1),1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{p} (0,1),\,1<p < \infty $$\end{document}, of systems of root functions of this problem.
引用
收藏
相关论文
共 32 条
[11]  
Binding PA(1980)Form domains and eigenfunction expansions for differential equations with eigenparameter dependent boundary conditions Proc. R. Soc. Edinb. Sect. A 86 1-27
[12]  
Browne PJ(2014)Eigenfunction expansions for a class of Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 40 52-64
[13]  
Seddici K(1977)-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter Proc. R. Soc. Edinb. Sect. A 77 293-308
[14]  
Binding PA(1979)Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions Q. J. Math. Oxf. Ser. 2 30 33-42
[15]  
Browne PJ(2007)Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions Differ. Equ. 43 905-915
[16]  
Binding PA(2003)An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition Sib. Math. J. 44 813-816
[17]  
Curgus B(2012)On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in a boundary condition Dokl. Math. 85 8-13
[18]  
Dijksma A(2012)On the basis properties of a spectral problem with spectral parameter in a boundary condition Trans. NAS Azerb. Ser. Phys.-Tech. Math. Sci. Math. Mech. 32 87-94
[19]  
Dunyamaliyeva AA(1975)Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions Funct. Anal. Appl. 9 358-359
[20]  
Fulton CT(1986)On the basis properties in the space J. Sov. Math. 33 1311-1342