Basis Properties in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{L}}_{{\varvec{p}}}$$\end{document} of Root Functions of Sturm–Liouville Problem with Spectral Parameter-Dependent Boundary Conditions

被引:0
作者
Ziyatkhan S. Aliyev
Aida A. Dunyamaliyeva
Yashar T. Mehraliyev
机构
[1] Baku State University,Department of Mathematical Analysis
[2] NAS of Azerbaijan,Department of Differential Equations Institute of Mathematics and Mechanics
[3] NAS of Azerbaijan,Department of Functional Analysis Institute of Mathematics and Mechanics
[4] Baku State University,Department of Differential Equations
关键词
Eigenvalue; root functions; spectral parameter in boundary conditions; Pontryagin space; basis properties of root functions; Primary 34B05; 34B08; 34B24; 34L10; Secondary 35P10; 47AO5; 47A75;
D O I
10.1007/s00009-017-0933-7
中图分类号
学科分类号
摘要
In this paper, we consider the Sturm–Liouville problem with spectral parameter in the boundary conditions. We associate this problem with a self-adjoint operator in the Pontryagin space Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{2}$$\end{document}. Using this operator-theoretic formulation and analytic methods, we study the basis properties in the space Lp(0,1),1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{p} (0,1),\,1<p < \infty $$\end{document}, of systems of root functions of this problem.
引用
收藏
相关论文
共 32 条
[1]  
Aliev ZS(2010)Basis properties of the root functions of an eigenvalue problem with a spectral parameter in the boundary conditions Dokl. Math. 82 583-586
[2]  
Aliyev ZS(2010)Basis properties of a fourth order differential operator with spectral parameter in the boundary condition Cent. Eur. J. Math. 8 378-388
[3]  
Aliev ZS(2011)Basis properties in Differ. Equ. 47 766-777
[4]  
Aliev ZS(2013) of systems of root functions of a spectral problem with spectral parameter in a boundary condition Dokl. Math. 87 137-139
[5]  
Aliev ZS(2012)On basis properties of root functions of a boundary value problem containing a spectral parameter in the boundary conditions Trans. NAS Azerb. Ser. Phys.-Tech. Math. Sci. Math. Mech. 32 21-28
[6]  
Dunyamaliyeva AA(2013)On defect basicity of the system of eigenfunctions of a spectral problem with a spectral parameter in the boundary conditions Dokl. Math. 88 441-445
[7]  
Aliev ZS(2015)Basis properties of root functions of the Sturm–Liouville problem with a spectral parameter in the boundary conditions Differ. Equ. 51 1249-1266
[8]  
Dunyamalieva AA(1993)Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions Proc. Edinb. Math. Soc. 37 57-72
[9]  
Aliev ZS(1995)Sturm–Liouville problems with eigenparameter dependent boundary conditions Proc. R. Soc. Edinb. Sect. A 125 1205-1218
[10]  
Dunyamalieva AA(2002)Application of two parameter eigencurves to Sturm–Liouville problems with eigenparameter dependent boundary conditions Can. J. Math. 54 1142-1164