Improved Model Selection Method for a Regression Function with Dependent Noise

被引:0
作者
D. Fourdrinier
S. Pergamenshchikov
机构
[1] Laboratoire de Mathématiques Raphaël Salem Université de Rouen,UMR CNRS 6085
来源
Annals of the Institute of Statistical Mathematics | 2007年 / 59卷
关键词
Model selection; Nonparametric estimation; Spherically symmetric distribution; Spherically symmetric regression model;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to nonparametric estimation, through the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}_2$$\end{document}-risk, of a regression function based on observations with spherically symmetric errors, which are dependent random variables (except in the normal case). We apply a model selection approach using improved estimates. In a nonasymptotic setting, an upper bound for the risk is obtained (oracle inequality). Moreover asymptotic properties are given, such as upper and lower bounds for the risk, which provide optimal rate of convergence for penalized estimators.
引用
收藏
页码:435 / 464
页数:29
相关论文
共 21 条
[1]  
Barron A.(1999)Risk bounds for model selection via penalization Probability Theory and Related Fields, 113 301-413
[2]  
Birgé L.(1992)Statistical methods for data with long-range depedence Statistical Science, 7 404-427
[3]  
Massart P.(1975)Minimax estimation of location vectors for a wide class of densities The Annals of Statistics, 3 1318-1328
[4]  
Beran J.(1999)Non trivial solutions of non-linear partial differential inequations and order cut-off Rendiconti di Matematica, Serie VII, 19 137-154
[5]  
Berger J.O.(1966)On the admissibility of invariant estimators of one or more location parameters The Annals of Mathematical Statistics, 37 1087-1136
[6]  
Blanchard D.(1995)Nonparametric regression under longe range dependent normal errors The Annals of Statistics, 23 1000-1014
[7]  
Fourdrinier D.(1995)Efficient location and regression estimation for longrange dependent regression models The Annals of Statistics, 23 1029-1047
[8]  
Brown L.D.(1995)Wavelet shrinkage: asymptotia? Journal of Royal Statistical Society, Services B, 57 301-369
[9]  
Csörgó S.(1996)A paradox concerning shrinkage estimators: should a known scale parameter be replaced by an estimated value in the shrinkage factor? Journal of Multivariate Analysis, 59 109-140
[10]  
Mielniczuk J.(1990)Nonparametric regression with long range dependence Stochastics Processes and their Applications 36 339-351