Tilting Modules and Support τ-Tilting Modules over Preprojective Algebras Associated with Symmetrizable Cartan Matrices

被引:0
作者
Changjian Fu
Shengfei Geng
机构
[1] SiChuan University,Department of Mathematics
来源
Algebras and Representation Theory | 2019年 / 22卷
关键词
Symmetrizable Cartan matrix; Preprojective algebras; Locally free modules; Generalized simple modules; Cofinite tilting ideals; Support ; -tilting modules; 16G10; 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
For any given symmetrizable Cartan matrix C with a symmetrizer D, Geiß et al. (2016) introduced a generalized preprojective algebra Π(C, D). We study tilting modules and support τ-tilting modules for the generalized preprojective algebra Π(C, D) and show that there is a bijection between the set of all cofinite tilting ideals of Π(C, D) and the corresponding Weyl group W(C) provided that C has no component of Dynkin type. When C is of Dynkin type, we also establish a bijection between the set of all basic support τ-tilting Π(C, D)-modules and the corresponding Weyl group W(C). These results generalize the classification results of Buan et al. (Compos. Math. 145(4), 1035–1079 2009) and Mizuno (Math. Zeit. 277(3), 665–690 2014) over classical preprojective algebras.
引用
收藏
页码:1239 / 1260
页数:21
相关论文
共 29 条
[1]  
Adachi T(2014)τ-tilting theory Compos. Math. 150 415-452
[2]  
Iyama O(2002)Periodic algebras which are almost Koszul Algebras Represent. Theory 5 331-367
[3]  
Reiten I(2009)Cluster structures for 2-Calabi-Yau categories and unipotent groups Compos. Math. 145 1035-1079
[4]  
Brenner S(2000)On the exceptional fibres of Kleinian singularities Amer. J. Math. 122 1027-1037
[5]  
Butler M(1979)Model algebras and representations of graphs Funktsional. Anal. i Prilozhen. 13 1-12
[6]  
King A(2008)Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras Amer. J. Math. 130 1089-1149
[7]  
Buan AB(2000)Semicanonical bases arising from enveloping algebras Adv. Math. 151 129-139
[8]  
Iyama O(1994)Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras Duke Math. 76 365-416
[9]  
Reiten I(2005)Semicanonical bases and preprojective algebras Ann. Sc. École Norm. Sup. 38 193-253
[10]  
Scott J(2006)Rigid modules over preprojective algebras Invent. Math. 165 589-632