Titanate ceramics with pyrochlore structure as a matrix for immobilization of excess weapons-grade plutonium: I. Radiation resistance

被引:0
作者
Volkov Yu.F. [1 ]
Tomilin S.V. [1 ]
Lukinykh A.N. [1 ]
Lizin A.A. [1 ]
Elesin A.A. [1 ]
Yakovenko A.G. [1 ]
Spiryakov V.I. [1 ]
Bychkov A.V. [1 ]
Jardine L.J. [2 ]
机构
[1] Res. Institute of Nuclear Reactors, Russian State Scientific Center, Dimitrovgrad, ul'Yanovsk Oblast, R.
[2] Lawrence Livermore Natl. Laboratory, Livermore, The United States
关键词
Immobilization; Plutonium; Waste Disposal; Structural Transformation; Radiation Damage;
D O I
10.1023/B:RACH.0000039111.16794.e8
中图分类号
学科分类号
摘要
Radiation resistance of titanate ceramics of a complex cationic composition with the pyrochlore structure, containing U, Pu, Ca, Gd, and Hf, is studied from the standpoint of its use for immobilization of excess weapons-grade plutonium. To induce radiation damage of the host matrix, isomorphic incorporation of 238Pu (t 1/2 = 87.7 years) at the ceramics preparation stage was used. Radiation-induced structural transformations in the ceramics were monitored by X-ray diffraction up to the radiation doses providing full amorphization of the structure. The critical damaging (amorphization) dose for the ceramics studied is estimated to be about 120 ×10 23 α-events m -3. Taking into account the planned concentration of incorporated 239Pu in the ceramics at a level of 10 wt %, the lower limit of amorphization time of the actual ceramics under conditions of a waste disposal site is estimated to be about 360 years.
引用
收藏
页码:351 / 357
页数:6
相关论文
共 21 条
  • [1] Jostsons A., Vance L., Ebbinghause B., Proc. Int. Conf. on Future Nuclear Systems GLOBAL'99, (1999)
  • [2] Wells A.F., Structural Inorganic Chemistry, 2, (1986)
  • [3] Hobbs L.W., Clinard Jr. F.W., Zinkle S.J., Ewing R.C., J. Nucl. Mater., 216, pp. 291-321, (1994)
  • [4] Clinard Jr. F.W., Hobbs L.W., Land C.C., Et al., J. Nucl. Mater., 105, pp. 248-256, (1982)
  • [5] Lumpkin G.R., J. Nucl. Mater., 289, pp. 136-166, (2001)
  • [6] Weber W.J., Wald J.W., Matzke Hj., J. Nucl. Mater., 138, pp. 196-209, (1986)
  • [7] Ewing R.C., Weber W.J., Clinard Jr. F.W., Prog. Nucl. Energy, 29, 2, pp. 63-127, (1995)
  • [8] Wang S.X., Wang L.M., Ewing R.C., Et al., Nucl. Instr. Meth. Phys. Res., Ser. B, 148, pp. 704-709, (1999)
  • [9] Wang S.X., Begg B.D., Wang L.M., Et al., J. Mater. Res., 14, 12, pp. 4470-4473, (1999)
  • [10] Yudintsev S.V., Stefanovskii S.V., Kir'yanova O.I., Et al., At. Energ., 90, 6, pp. 467-474, (2001)