Stieltjes interlacing of zeros of little q-Jacobi and q-Laguerre polynomials from different sequences

被引:0
作者
Pinaki Prasad Kar
Kerstin Jordaan
Priyabrat Gochhayat
机构
[1] Sambalpur University,Department of Mathematics
[2] University of South Africa,Department of Decision Sciences
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Interlacing of zeros; Stieltjes interlacing; Bounds; Little ; -Jacobi polynomials; -Laguerre polynomials; 33D15; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
Stieltjes interlacing states that if {pn(z)}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{p_{n}(z)\}_{n=0}^{\infty }$\end{document} is a sequence of orthogonal polynomials, then there is at least one zero of pn(z) in between any two consecutive zeros of pm(z), where m < n − 1. Stieltjes interlacing holds for the zeros of polynomials from different sequences of little q-Jacobi polynomials pn(z;a,b|q), 0 < aq < 1, bq < 1 and q-Laguerre polynomials Ln(δ)(z;q),δ>−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{n}^{(\delta )}(z;q),\delta >-1$\end{document}. We consider cases where the degree difference is 2 or 3 and, in each case, we derive the associated polynomials analogous to the de Boor-Saff polynomials whose zeros will complete the interlacing. We derive upper bounds for the smallest zeros of these polynomials and provide numerical examples to illustrate improvements on previously known bounds that have been obtained using different approaches.
引用
收藏
页码:723 / 746
页数:23
相关论文
共 32 条
[1]  
Beardon AF(2011)The theorems of Stieltjes and Favard Comput. Methods Funct. Theory 11 247-262
[2]  
Bender CM(2000)Conjecture on the interlacing of zeros in complex Sturm–Liouville problems J. Math. Phys. 41 6381-6387
[3]  
Boettcher S(1986)Finite sequences of orthogonal polynomials connected by a Jacobi matrix Linear Algebra Appl. 75 43-55
[4]  
Savage VM(2012)Interlacing of zeros of Gegenbauer polynomials of non-consecutive degree from different sequences Numer. Math. 120 35-44
[5]  
de Boor C(2008)Interlacing of the zeros of Jacobi polynomials with different parameters Numer. Algor. 49 143-152
[6]  
Saff EB(2011)Stieltjes interlacing of zeros of Jacobi polynomials from different sequences Electron Trans. Numer. Anal. 38 317-326
[7]  
Driver K(2012)Bounds for extreme zeros of some classical orthogonal polynomials J. Approx. Theory 164 1200-1204
[8]  
Driver K(2013)Inequalities for extreme zeros of some classical orthogonal and q-orthogonal polynomials Math. Model. Nat. Phenom. 8 48-59
[9]  
Jordaan K(2011)Stieltjes interlacing of zeros of Laguerre polynomials from different sequences Indag. Math. 21 204-211
[10]  
Mbuyi N(2016)Interlacing properties and bounds for zeros of 2ϕ1 hypergeometric and little q-Jacobi polynomials Ramanujan J. 40 45-62