Topological obstructions to continuity of Orlicz–Sobolev mappings of finite distortion

被引:0
作者
Paweł Goldstein
Piotr Hajłasz
机构
[1] University of Warsaw,Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics
[2] University of Pittsburgh,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2019年 / 198卷
关键词
Orlicz–Sobolev mappings; Rational homology spheres; Mappings of finite distortion; Primary 30C65; Secondary 46E35; 58C07;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper we investigate continuity of Orlicz–Sobolev mappings W1,P(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,P}(M,N)$$\end{document} of finite distortion between smooth Riemannian n-manifolds, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, under the assumption that the Young function P satisfies the so-called divergence condition ∫1∞P(t)/tn+1dt=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _1^\infty P(t)/t^{n+1}\, \hbox {d}t=\infty $$\end{document}. We prove that if the manifolds are oriented, N is compact, and the universal cover of N is not a rational homology sphere, then such mappings are continuous. That includes mappings with Df∈Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Df\in L^n$$\end{document} and, more generally, mappings with Df∈Lnlog-1L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Df\in L^n\log ^{-1}L$$\end{document}. On the other hand, if the space W1,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,P}$$\end{document} is larger than W1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,n}$$\end{document} (for example if Df∈Lnlog-1L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Df\in L^n\log ^{-1}L$$\end{document}), and the universal cover of N is homeomorphic to Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^n$$\end{document}, n≠4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ne 4$$\end{document}, or is diffeomorphic to Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^n$$\end{document}, n=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4$$\end{document}, then we construct an example of a mapping in W1,P(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,P}(M,N)$$\end{document} that has finite distortion and is discontinuous. This demonstrates a new global-to-local phenomenon: Both finite distortion and continuity are local properties, but a seemingly local fact that finite distortion implies continuity is a consequence of a global topological property of the target manifold N.
引用
收藏
页码:243 / 262
页数:19
相关论文
共 37 条
[1]  
Barden D(1965)Simply connected five-manifolds Ann. Math. 82 365-385
[2]  
Bonk M(2001)Quasiregular mappings and cohomology Acta Math. 186 219-238
[3]  
Heinonen J(2016)Smooth approximation of Orlicz–Sobolev maps between manifolds Potential Anal. 45 557-578
[4]  
Carozza M(1957)Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in Rend. Sem. Mat. Univ. Padova 27 284-305
[5]  
Cianchi A(2012) variabili J. Geom. Anal. 22 320-338
[6]  
Gagliardo E(1995)Sobolev mappings, degree, homotopy classes and rational homology spheres Topol. Methods Nonlinear Anal. 6 81-95
[7]  
Goldstein P(1993)Degree formulas for maps with nonintegrable Jacobian Colloq. Math. 64 93-101
[8]  
Hajłasz P(2008)Change of variables formula under minimal assumptions Mem. Am. Math. Soc. 192 2008-246
[9]  
Greco L(1997)Weakly differentiable mappings between manifolds J. Func. Anal. 143 221-531
[10]  
Iwaniec T(2001)Traces of Sobolev functions on fractal type sets and characterization of extension domains Invent. Math. 144 507-143