A survey of FPGA-based accelerators for convolutional neural networks

被引:3
|
作者
Sparsh Mittal
机构
[1] Indian Institute of Technology,Department of Computer Science and Engineering
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Deep learning; Neural network (NN); Convolutional NN (CNN); Binarized NN; Hardware architecture for machine learning; FPGA; Reconfigurable computing; Parallelization; Low power;
D O I
暂无
中图分类号
学科分类号
摘要
Deep convolutional neural networks (CNNs) have recently shown very high accuracy in a wide range of cognitive tasks, and due to this, they have received significant interest from the researchers. Given the high computational demands of CNNs, custom hardware accelerators are vital for boosting their performance. The high energy efficiency, computing capabilities and reconfigurability of FPGA make it a promising platform for hardware acceleration of CNNs. In this paper, we present a survey of techniques for implementing and optimizing CNN algorithms on FPGA. We organize the works in several categories to bring out their similarities and differences. This paper is expected to be useful for researchers in the area of artificial intelligence, hardware architecture and system design.
引用
收藏
页码:1109 / 1139
页数:30
相关论文
共 50 条
  • [41] Optimization of FPGA-based CNN accelerators using metaheuristics
    Sait, Sadiq M.
    El-Maleh, Aiman
    Altakrouri, Mohammad
    Shawahna, Ahmad
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (04) : 4493 - 4533
  • [42] A generic execution framework for shared FPGA-based accelerators
    Alexandru, Dumitru Laurentiu
    Maniu, Rares
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 803 - 808
  • [43] Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network
    Cho, Mannhee
    Kim, Youngmin
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [44] A Review of FPGA-Based Custom Computing Architecture for Convolutional Neural Network Inference
    Peng Xiyuan
    Yu Jinxiang
    Yao Bowen
    Liu Liansheng
    Peng Yu
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (01) : 1 - 17
  • [45] VHDL Generator for A High Performance Convolutional Neural Network FPGA-Based Accelerator
    Hamdan, Muhammad K.
    Rover, Diane T.
    2017 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2017,
  • [46] Efficient Design of Pruned Convolutional Neural Networks on FPGA
    Vestias, Mario
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (05): : 531 - 544
  • [47] Efficient Design of Pruned Convolutional Neural Networks on FPGA
    Mário Véstias
    Journal of Signal Processing Systems, 2021, 93 : 531 - 544
  • [48] Design of Convolutional Neural Networks Hardware Acceleration Based on FPGA
    Qin Huabiao
    Cao Qinping
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (11) : 2599 - 2605
  • [49] FPGA-Based Network-Attached Accelerators - An Environmental Life Cycle Perspective
    Steinert, Fritjof
    Stabernack, Benno
    ARCHITECTURE OF COMPUTING SYSTEMS, ARCS 2023, 2023, 13949 : 248 - 263
  • [50] InSight: An FPGA-Based Neuromorphic Computing System for Deep Neural Networks
    Hong, Taeyang
    Kang, Yongshin
    Chung, Jaeyong
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2020, 10 (04) : 1 - 18