Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies

被引:0
作者
Xu Wang
Daljit Singh
Sandeep Marla
Geoffrey Morris
Jesse Poland
机构
[1] Kansas State University,Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center
[2] Kansas State University,Department of Agronomy, 2004 Throckmorton Plant Sciences Center
来源
Plant Methods | / 14卷
关键词
Plant height; Sorghum; Ultrasonic sensor; Laser rangefinder; Kinect time-of-flight camera; Photogrammetry; Digital elevation model;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 42 条
[21]   High-Throughput Phenotyping Analysis of Potted Soybean Plants Using Colorized Depth Images Based on A Proximal Platform [J].
Ma, Xiaodan ;
Zhu, Kexin ;
Guan, Haiou ;
Feng, Jiarui ;
Yu, Song ;
Liu, Gang .
REMOTE SENSING, 2019, 11 (09)
[22]   Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery [J].
Malambo, L. ;
Popescu, S. C. ;
Murray, S. C. ;
Putman, E. ;
Pugh, N. A. ;
Horne, D. W. ;
Richardson, G. ;
Sheridan, R. ;
Rooney, W. L. ;
Avant, R. ;
Vidrinec, M. ;
McCutchen, B. ;
Baltensperger, D. ;
Bishop, M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 64 :31-42
[23]   A leaf-level spectral library to support high-throughput plant phenotyping: predictive accuracy and model transfer [J].
Wijewardane, Nuwan K. ;
Zhang, Huichun ;
Yang, Jinliang ;
Schnable, James C. ;
Schachtman, Daniel P. ;
Ge, Yufeng .
JOURNAL OF EXPERIMENTAL BOTANY, 2023, 74 (14) :4050-4062
[24]   Identification and Counting of Sorghum Panicles Using Artificial Intelligence Based Drone Field Phenotyping [J].
Mbaye, Modou ;
Audebert, Alain .
ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2021, 1 (03) :234-240
[25]   Remote Sensing of Maize Plant Height at Different Growth Stages Using UAV-Based Digital Surface Models (DSM) [J].
Oehme, Leon Hinrich ;
Reineke, Alice-Jacqueline ;
Weiss, Thea Mi ;
Wuerschum, Tobias ;
He, Xiongkui ;
Mueller, Joachim .
AGRONOMY-BASEL, 2022, 12 (04)
[26]   UAV-Based LiDAR for High-Throughput Determination of Plant Height and Above-Ground Biomass of the Bioenergy Grass Arundo donax [J].
Maesano, Mauro ;
Khoury, Sacha ;
Nakhle, Farid ;
Firrincieli, Andrea ;
Gay, Alan ;
Tauro, Flavia ;
Harfouche, Antoine .
REMOTE SENSING, 2020, 12 (20) :1-20
[27]   Corn and sorghum phenotyping using a fixed-wing UAV-based remote sensing system [J].
Shi, Yeyin ;
Murray, Seth C. ;
Rooney, William L. ;
Valasek, John ;
Olsenholler, Jeff ;
Pugh, N. Ace ;
Henrickson, James ;
Bowden, Ezekiel ;
Zhang, Dongyan ;
Thomasson, J. Alex .
AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING, 2016, 9866
[28]   High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum [J].
Gomez, Francisco E. ;
Carvalho, Geraldo, Jr. ;
Shi, Fuhao ;
Muliana, Anastasia H. ;
Rooney, William L. .
PLANT METHODS, 2018, 14
[29]   High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum [J].
Francisco E. Gomez ;
Geraldo Carvalho ;
Fuhao Shi ;
Anastasia H. Muliana ;
William L. Rooney .
Plant Methods, 14
[30]   Using high-throughput amplified fragment length polymorphism to distinguish sorghum greenbug (Homoptera: Aphididae) biotypes [J].
Zhu-Salzman, K ;
Li, HW ;
Klein, PE ;
Gorena, RL ;
Salzman, RA .
AGRICULTURAL AND FOREST ENTOMOLOGY, 2003, 5 (04) :311-315