Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity

被引:0
作者
D. Gómez
S. A. Nazarov
M. E. Pérez
机构
[1] Universidad de Cantabria,Departamento de Matemáticas, Estadística y Computación
[2] Saint-Petersburg State University,Departamento de Matemática Aplicada y Ciencias de la Computación
[3] Universidad de Cantabria,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Homogenization; Linear elasticity; Steklov problem; Winkler foundation; Spectral perturbation theory; Floquet–Bloch–Gelfand transform; 35B27; 74B05; 35P05; 35B25; 35J25; 35P15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a homogenization Winkler–Steklov spectral problem that consists of the elasticity equations for a three-dimensional homogeneous anisotropic elastic body which has a plane part of the surface subject to alternating boundary conditions on small regions periodically placed along the plane. These conditions are of the Dirichlet type and of the Winkler–Steklov type, the latter containing the spectral parameter. The rest of the boundary of the body is fixed, and the period and size of the regions, where the spectral parameter arises, are of order ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. For fixed ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, the problem has a discrete spectrum, and we address the asymptotic behavior of the eigenvalues {βkε}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\beta _k^\varepsilon \}_{k=1}^{\infty }$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}. We show that βkε=O(ε-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _k^\varepsilon =O(\varepsilon ^{-1})$$\end{document} for each fixed k, and we observe a common limit point for all the rescaled eigenvalues εβkε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \beta _k^\varepsilon $$\end{document} while we make it evident that, although the periodicity of the structure only affects the boundary conditions, a band-gap structure of the spectrum is inherited asymptotically. Also, we provide the asymptotic behavior for certain “groups” of eigenmodes.
引用
收藏
相关论文
共 54 条
[1]  
Brillard A(1990)Homogénéisation de frontières par épi-convergence en élasticité linéaire RAIRO Modél. Math. Anal. Numér. 24 5-26
[2]  
Lobo M(2006)Asymptotic analysis and scaling of friction parameters Z. Angew. Math. Phys. (ZAMP) 57 1-15
[3]  
Pérez E(2004)Instability of a periodic systems of faults Geophys. J. Int. 159 212-222
[4]  
Bucur D(2013)Multiscale asymptotic method for Steklov eigenvalue equations in composite media SIAM J. Numer. Anal. 51 273-296
[5]  
Ionescu I(1950)Expansions in eigenfunctions of an equation with periodic coefficients Dokl. Acad. Nauk SSSR 73 1117-1120
[6]  
Campillo M(2017)Spectral geometry of the Steklov problem J. Spectr. Theory 7 321-359
[7]  
Dascalu C(2005)-convergence for a fault model with slip-weakening friction and periodic barriers Quart. Appl. Math. 63 747-778
[8]  
Ionescu I(1967)Boundary problems for elliptic equations in domains with conical or angular points Trans. Moscow Math. Soc. 16 227-313
[9]  
Cao L(2014)The legacy of Vladimir Andreevich Steklov Notices Am. Math. Soc. 61 9-22
[10]  
Zhang L(2015)On the asymptotic derivation of Winkler-type energies from 3D elasticity J. Elast. 121 275-301