A high precision logarithmic-curvature compensated all CMOS voltage reference

被引:0
作者
Tayebeh Ghanavati Nejad
Ebrahim Farshidi
Henrik Sjöland
Abdolnabi Kosarian
机构
[1] Shahid Chamran University of Ahvaz,Department of Electrical Engineering
[2] Lund University,Department of Electrical and Information Technology
来源
Analog Integrated Circuits and Signal Processing | 2019年 / 99卷
关键词
Voltage reference; All-CMOS; Curvature-compensation; TC; PSRR; Low power; Low voltage; Low noise;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a resistor-less high-precision, sub-1 V all-CMOS voltage reference. A curvature-compensation method is used to cancel the logarithmic temperature dependence regardless of mobility temperature exponent (γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\upgamma)$$\end{document}. The circuit is simulated in 65 nm CMOS technology and yields an output voltage of 594 mV, temperature coefficient of 7ppm∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7\frac{\text{ppm}}{{^{ \circ } {\text{C}}}}$$\end{document} in the range of −40 to 125 °C, a power supply rejection ratio (PSRR) of − 43 dB at of 100 Hz, a line sensitivity of 76μVV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{76\,\upmu{\text{V}}}}{\text{V}}$$\end{document} in the supply voltage range of 1.2 to 2 V, a power dissipation of 1.4μW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.4\,\upmu{\text{W}}$$\end{document} at 1.2 V supply and an output noise of 2.8μVHz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.8\frac{{\upmu{\text{V}}}}{{\sqrt {\text{Hz}} }}$$\end{document} at 100Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,{\text{Hz}}$$\end{document}. The total active area of the design is 0.03mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.03\,{\text{mm}}^{2}$$\end{document}. This voltage reference is suitable for low-power, low-voltage applications which also require high precision.
引用
收藏
页码:383 / 392
页数:9
相关论文
共 56 条
[1]  
Banba H(1999)A CMOS bandgapreferencecircuitwithsub-1-Voperation IEEE Journal of Solid-State Circuits 3 4 670-674
[2]  
Shiga H(1971)New developments in IC voltage regulators IEEE Journal of Solid-State Circuits SSC-6 2-7
[3]  
Umezawa A(1997)A DSP-based hearing instrument IC IEEE Journal of Solid-State Circuits 32 1790-1806
[4]  
Miyaba T(1974)A simple three-terminal IC bandgap reference IEEE Journal of Solid-State Circuits SSC-9 388-393
[5]  
Tanzawa T(2002)A sub-1-V 15 ppm/C CMOS bandgap voltage reference without requiring low threshold voltage device IEEE Journal of Solid-State Circuits 37 526-530
[6]  
Atsumi S(2004)A CMOS subbandgap reference circuit with 1-V power supply voltage IEEE Journal of Solid-State Circuits 39 252-255
[7]  
Sakui K(2003)A 2-V 23u A 5.3-ppm/C curvature-compensated CMOS bandgap voltage reference IEEE Journal of Solid-State Circuits 38 561-564
[8]  
Widlar RJ(1998)A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference IEEE Journal of Solid-State Circuits 33 1551-1554
[9]  
Neuteboom H(2011)A 1.2-V piecewise curvature-corrected bandgap reference in 0.5 mCMOS process IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19 1118-1122
[10]  
Kup BMJ(2014)A 1.2-V 4.2-ppm C high-order curvature-compensated CMOS bandgap reference IEEE Transactions on Circuits and Systems—I 62 662-670