Enhancing Semi Supervised Semantic Segmentation Through Cycle-Consistent Label Propagation in Video

被引:0
|
作者
Veerababu Addanki
Dhanvanth Reddy Yerramreddy
Sathvik Durgapu
Sasi Sai Nadh Boddu
Vyshnav Durgapu
机构
[1] Amrita Vishwa Vidyapeetham,
[2] SASTRA University,undefined
来源
Neural Processing Letters | / 56卷
关键词
Deep learning; Semantic segmentation; Label propagation; Noisy labels;
D O I
暂无
中图分类号
学科分类号
摘要
To perform semantic image segmentation using deep learning models, a significant quantity of data and meticulous manual annotation is necessary (Mani in: Research anthology on improving medical imaging techniques for analysis and intervention. IGI Global, pp. 107–125, 2023), and the process consumes a lot of resources, including time and money. To resolve such issues, we introduce a unique label propagation method (Qin et al. in IEEE/CAA J Autom Sinica 10(5):1192–1208, 2023) that utilizes cycle consistency across time to propagate labels over longer time horizons with higher accuracy. Additionally, we acknowledge that dense pixel annotation is a noisy process (Das et al. in: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 5978–5987, 2023), whether performed manually or automatically. To address this, we present a principled approach that accounts for label uncertainty when training with labels from multiple noisy labeling processes. We introduce two new approaches; Warp-Refine Propagation and Uncertainty-Aware Training, for improving label propagation and handling noisy labels, respectively, and support the process with quantitative and qualitative evaluations and theoretical justification. Our contributions are validated on the Cityscapes and ApolloScape datasets, where we achieve encouraging results. In later endeavors, the aim should be to expand such approaches to include other noisy augmentation processes like image-based rendering methods (Laraqui et al. in Int J Comput Aid Eng Technol 18(5):141–151, 2023), thanks to the noisy label learning approach.
引用
收藏
相关论文
共 50 条
  • [41] Label Propagation and Contrastive Regularization for Semisupervised Semantic Segmentation of Remote Sensing Images
    Yang, Zhujun
    Yan, Zhiyuan
    Diao, Wenhui
    Zhang, Qiang
    Kang, Yuzhuo
    Li, Junxi
    Li, Xinming
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [42] Cyclic label propagation for graph semi-supervised learning
    Zhao Li
    Yixin Liu
    Zhen Zhang
    Shirui Pan
    Jianliang Gao
    Jiajun Bu
    World Wide Web, 2022, 25 : 703 - 721
  • [43] Semi-supervised community detection using label propagation
    Liu, Dong
    Bai, Hong-Yu
    Li, Hui-Jia
    Wang, Wen-Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (29):
  • [44] INTEGRATING SEMI-SUPERVISED LABEL PROPAGATION AND RANDOM FORESTS FOR MULTI-ATLAS BASED HIPPOCAMPUS SEGMENTATION
    Zheng, Qiang
    Fan, Yong
    Weiner, Michael W.
    Aisen, Paul
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Logovinsky, Veronika
    Green, Robert C.
    Montine, Tom
    Petersen, Ronald
    Aisen, Paul
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Beckett, Laurel
    Harvey, Danielle
    Donohue, Michael
    Jack, Clifford R., Jr.
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 154 - 157
  • [45] BLPSeg: Balance the Label Preference in Scribble-Supervised Semantic Segmentation
    Wang, Yude
    Zhang, Jie
    Kan, Meina
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4921 - 4934
  • [46] Weakly Supervised and Semi-Supervised Semantic Segmentation for Optic Disc of Fundus Image
    Lu, Zheng
    Chen, Dali
    SYMMETRY-BASEL, 2020, 12 (01):
  • [47] S6: SEMI-SUPERVISED SELF-SUPERVISED SEMANTIC SEGMENTATION
    Soliman, Moamen
    Lehman, Charles
    AlRegib, Ghassan
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1861 - 1865
  • [48] Semi-Supervised Semantic Segmentation for Identification of Irrelevant Objects in a Waste Recycling Plant
    Dominguez, Cesar
    Heras, Jonathan
    Mata, Eloy
    Pascual, Vico
    Fernandez-Cedron, Lucas
    Martinez-Lanchares, Marcos
    Pellejero-Espinosa, Jon
    Rubio-Loscertales, Antonio
    Tarragona-Perez, Carlos
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2023, 29 (05) : 419 - 431
  • [49] Semantic segmentation of low magnification effusion cytology images: A semi-supervised approach
    Aboobacker, Shajahan
    Vijayasenan, Deepu
    David, Sumam
    Suresh, Pooja K.
    Sreeram, Saraswathy
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [50] S5Mars: Semi-Supervised Learning for Mars Semantic Segmentation
    Zhang, Jiahang
    Lin, Lilang
    Fan, Zejia
    Wang, Wenjing
    Liu, Jiaying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15