Enhancing Semi Supervised Semantic Segmentation Through Cycle-Consistent Label Propagation in Video

被引:0
|
作者
Veerababu Addanki
Dhanvanth Reddy Yerramreddy
Sathvik Durgapu
Sasi Sai Nadh Boddu
Vyshnav Durgapu
机构
[1] Amrita Vishwa Vidyapeetham,
[2] SASTRA University,undefined
来源
Neural Processing Letters | / 56卷
关键词
Deep learning; Semantic segmentation; Label propagation; Noisy labels;
D O I
暂无
中图分类号
学科分类号
摘要
To perform semantic image segmentation using deep learning models, a significant quantity of data and meticulous manual annotation is necessary (Mani in: Research anthology on improving medical imaging techniques for analysis and intervention. IGI Global, pp. 107–125, 2023), and the process consumes a lot of resources, including time and money. To resolve such issues, we introduce a unique label propagation method (Qin et al. in IEEE/CAA J Autom Sinica 10(5):1192–1208, 2023) that utilizes cycle consistency across time to propagate labels over longer time horizons with higher accuracy. Additionally, we acknowledge that dense pixel annotation is a noisy process (Das et al. in: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 5978–5987, 2023), whether performed manually or automatically. To address this, we present a principled approach that accounts for label uncertainty when training with labels from multiple noisy labeling processes. We introduce two new approaches; Warp-Refine Propagation and Uncertainty-Aware Training, for improving label propagation and handling noisy labels, respectively, and support the process with quantitative and qualitative evaluations and theoretical justification. Our contributions are validated on the Cityscapes and ApolloScape datasets, where we achieve encouraging results. In later endeavors, the aim should be to expand such approaches to include other noisy augmentation processes like image-based rendering methods (Laraqui et al. in Int J Comput Aid Eng Technol 18(5):141–151, 2023), thanks to the noisy label learning approach.
引用
收藏
相关论文
共 50 条
  • [31] Context propagation embedding network for weakly supervised semantic segmentation
    Xu, Yajun
    Mao, Zhendong
    Chen, Zhineng
    Wen, Xin
    Li, Yangyang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 33925 - 33942
  • [32] SEMI-SUPERVISED SEMANTIC SEGMENTATION CONSTRAINED BY CONSISTENCY REGULARIZATION
    Li, Xiaoqiang
    He, Qin
    Dai, Songmin
    Wu, Pin
    Tong, Weiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [33] A survey of semi- and weakly supervised semantic segmentation of images
    Zhang, Man
    Zhou, Yong
    Zhao, Jiaqi
    Man, Yiyun
    Liu, Bing
    Yao, Rui
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (06) : 4259 - 4288
  • [34] A survey of semi- and weakly supervised semantic segmentation of images
    Man Zhang
    Yong Zhou
    Jiaqi Zhao
    Yiyun Man
    Bing Liu
    Rui Yao
    Artificial Intelligence Review, 2020, 53 : 4259 - 4288
  • [35] An efficient and scalable semi-supervised framework for semantic segmentation
    Huazheng Hao
    Hui Xiao
    Junjie Xiong
    Li Dong
    Diqun Yan
    Dongtai Liang
    Jiayan Zhuang
    Chengbin Peng
    Neural Computing and Applications, 2025, 37 (7) : 5481 - 5497
  • [36] A Pseudo Variance Algorithm for Semi-Supervised Semantic Segmentation
    Li, Bin
    Ye, Mengting
    Jiang, Xiangyuan
    Ma, Xiaojing
    Sun, Wenxu
    Chen, Jiyang
    Ma, Sile
    IEEE ACCESS, 2025, 13 : 34149 - 34159
  • [37] Semi-supervised semantic segmentation with cross teacher training
    Xiao, Hui
    Li, Dong
    Xu, Hao
    Fu, Shuibo
    Yan, Diqun
    Song, Kangkang
    Peng, Chengbin
    NEUROCOMPUTING, 2022, 508 : 36 - 46
  • [38] Semi-supervised Learning Methods for Semantic Segmentation of Polyps
    Ines, Adrian
    Dominguez, Cesar
    Heras, Jonathan
    Mata, Eloy
    Pascual, Vico
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 162 - 172
  • [39] Cyclic label propagation for graph semi-supervised learning
    Li, Zhao
    Liu, Yixin
    Zhang, Zhen
    Pan, Shirui
    Gao, Jianliang
    Bu, Jiajun
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (02): : 703 - 721
  • [40] Label Propagation Classification Based on Semi-supervised Affinity Propagation Algorithm
    Zhang Xiao-yan
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 476 - 481