A note on rigidity of Riemannian manifolds with positive scalar curvature

被引:0
|
作者
Guangyue Huang
Qianyu Zeng
机构
[1] Henan Normal University,Department of Mathematics
来源
Archiv der Mathematik | 2020年 / 115卷
关键词
Einstein; Rigidity; Conformally flat; Primary 53C20; Secondary 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note, we obtain an integral inequality for closed Riemannian manifolds with positive scalar curvature and give some rigidity characterization of the equality case, which generalizes the recent results of Catino which deal with the conformally flat case, and of Huang and Ma which deal with the harmonic curvature case. Moreover, we obtain an integral pinching condition with non-negative constant σ2(Aτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2(A^{\tau })$$\end{document}, which can be seen as a complement to Bo and Sheng who considered conformally flat manifolds with constant quotient curvature of σk(Aτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k(A^{\tau })$$\end{document}.
引用
收藏
页码:457 / 465
页数:8
相关论文
共 50 条