Local version of approximation theorem and of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-tensor product of operator systems

被引:0
作者
Surbhi Beniwal
Ajay Kumar
Preeti Luthra
机构
[1] University of Delhi,Department of Mathematics
[2] University of Delhi,Department of Mathematics, Mata Sundri College for Women
关键词
Local operator systems; Tensor products; Projective limits; Operator systems; 46L06; 46L07; 46M40;
D O I
10.1007/s43036-022-00200-6
中图分类号
学科分类号
摘要
Local operator systems are projective limits of operator systems. In this paper, we discuss several tensor products including minimal (lmin), maximal (lmax), local commuting, and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-tensor product in the category of local operator systems. A characterization of (lmin, lmax)-nuclearity is given which is local version of approximation theorem. We also show that projective limit of operator systems having completely positive factorization property (CPFP) is a local operator system having local completely positive factorization property (LCPFP).
引用
收藏
相关论文
共 23 条
  • [1] Beniwal S(2021)Local operator system structures and their tensor products Adv. Oper. Theory 6 39-167
  • [2] Kumar A(1991)Complete positivity, tensor products and Proc. Indian Acad. Sci. Math. Sci. 101 149-209
  • [3] Luthra P(1977)-nuclearity for inverse limits of J. Funct. Anal. 24 156-1760
  • [4] Bhatt SJ(2008)-algebras J. Funct. Anal. 255 1724-1009
  • [5] Karia DJ(2011)Injectivity and operator spaces J. Funct. Anal. 261 999-235
  • [6] Choi M-D(1971)Local operator spaces, unbounded operators and multinormed Mem. Fac. Sci. Kyushu Univ. Ser. A 25 197-319
  • [7] Effros EG(2009)-algebras Positivity 13 307-299
  • [8] Dosiev A(2011)An approximation theorem for nuclear operator systems J. Funct. Anal. 261 267-351
  • [9] Han KH(1998)Locally J. Funct. Anal. 155 324-652
  • [10] Paulsen VI(2018)-algebra Positivity 22 629-195