Effects of Hydrogen Charging Time and Pressure on the Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel Material

被引:0
|
作者
Hong-Jiang Wan
Xiao-Qi Wu
Hong-Liang Ming
Jian-Qiu Wang
En-Hou Han
机构
[1] University of Science and Technology of China,School of Materials Science and Engineering
[2] Chinese Academy of Sciences,CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research
[3] Northeastern University,School of Materials Science and Engineering
[4] Institute of Corrosion Science and Technology,undefined
关键词
Hydrogen embrittlement; X52 pipeline steel material; Tubular specimen; Hydrogen charging time; Hydrogen charging pressure;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of hydrogen charging time and pressure on the hydrogen embrittlement (HE) susceptibility of X52 pipeline steel material are studied by slow strain rate tensile tests. The fracture morphologies of the specimens are observed by scanning electron microscopy. The HE susceptibility of the X52 pipeline steel material increases with an increase in both hydrogen charging time and hydrogen pressure. At a charging time of 96 h, the HE susceptibility index reaches 45.86%, approximately 3.6 times that at a charging time of 0 h. Similarly, a charging pressure of 4 MPa results in a HE susceptibility index of 31.61%, approximately 2.5 times higher than that at a charging pressure of 0.3 MPa.
引用
收藏
页码:293 / 307
页数:14
相关论文
共 50 条
  • [11] Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment
    Li, Jiaqing
    Wu, Ziyue
    Zhu, Lijie
    Zhang, Zhuwu
    Teng, Lin
    Zhang, Liang
    Lu, Cheng
    Wang, Rui
    Zhang, Che
    CORROSION SCIENCE, 2023, 223
  • [12] Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel
    Kyriakopoulou, Helen P.
    Karmiris-Obratanski, Panagiotis
    Tazedakis, Athanasios S.
    Daniolos, Nikoalos M.
    Dourdounis, Efthymios C.
    Manolakos, Dimitrios E.
    Pantelis, Dimitrios
    MICROMACHINES, 2020, 11 (04)
  • [13] Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking
    Dong, C. F.
    Liu, Z. Y.
    Li, X. G.
    Cheng, Y. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (24) : 9879 - 9884
  • [14] Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions
    Wang, D.
    Hagen, A. B.
    Fathi, P. U.
    Lin, M.
    Johnsen, R.
    Lu, X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [15] The Effects of Pressure Fluctuations on Hydrogen Embrittlement in Pipeline
    Xing, Xiao
    Yu, Mengshan
    Tehinse, Olayinka
    Chen, Weixing
    Zhang, Hao
    PROCEEDINGS OF THE 11TH INTERNATIONAL PIPELINE CONFERENCE, 2016, VOL 1, 2017,
  • [16] Hydrogen permeability in a plasma nitrided API X52 steel
    Cisneros, MM
    López, H
    Salas, N
    Valdés, JV
    Cisneros, MA
    Figueroa, U
    ADVANCED STRUCTURAL MATERIALS, 2003, 442 : 85 - 90
  • [17] Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel
    Zhou, Chengshuang
    Ye, Baoguo
    Song, Yangyang
    Cui, Tiancheng
    Xu, Peng
    Zhang, Lin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (40) : 22547 - 22558
  • [18] Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment
    Thanh Tuan Nguyen
    Tak, Naehyung
    Park, Jaeyeong
    Nahm, Seung Hoon
    Beak, Un Bong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) : 23739 - 23753
  • [19] Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement and Mechanical Properties of Quenched Tempered X100 Pipeline Steel
    Davani, Reza Khatib Zadeh
    Entezari, Ehsan
    Mohtadi-Bonab, M. A.
    Yadav, Sandeep
    Cabezas, Jhon Freddy Aceros
    Szpunar, Jerzy
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (01) : 318 - 330
  • [20] Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement and Mechanical Properties of Quenched Tempered X100 Pipeline Steel
    Reza Khatib Zadeh Davani
    Ehsan Entezari
    M. A. Mohtadi-Bonab
    Sandeep Yadav
    Jhon Freddy Aceros Cabezas
    Jerzy Szpunar
    Journal of Failure Analysis and Prevention, 2024, 24 : 318 - 330