Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
来源
Advances in Difference Equations | / 2016卷
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Oscillation criteria for nonlinear fractional differential equation with damping term
    Bayram, Mustafa
    Adiguzel, Hakan
    Secer, Aydin
    OPEN PHYSICS, 2016, 14 (01): : 119 - 128
  • [32] Oscillation Criteria for Certain Nonlinear Differential Equations with Damping
    Zheng, Zhaowen
    Zhu, Siming
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 219 - 229
  • [33] The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term
    Bai, Zhihong
    Xu, Run
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [34] Oscillation theorems for nonlinear fractional difference equations
    Adiguzel, Hakan
    BOUNDARY VALUE PROBLEMS, 2018,
  • [35] OSCILLATION OF SOLUTIONS TO NONLINEAR FORCED FRACTIONAL DIFFERENTIAL EQUATIONS
    Feng, Qinghua
    Meng, Fanwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [36] Oscillation theorems for nonlinear fractional difference equations
    Hakan Adiguzel
    Boundary Value Problems, 2018
  • [37] Interval criteria of oscillation for forced superlinear difference equations
    Zheng, ZW
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (3-4): : 555 - 562
  • [38] Oscillation Tests for Conformable Fractional Differential Equations with Damping
    Ladrani, Fatima Zohra
    Cherif, Amine Benaissa
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (02): : 73 - 82
  • [39] Forced oscillation of higher order nonlinear difference equations
    Sun, Y. G.
    Saker, S. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 868 - 872
  • [40] Oscillation Results for Second Order Matrix Differential Equations with Damping
    Basci, Yasemin
    Tiryaki, Aydin
    FILOMAT, 2017, 31 (15) : 4749 - 4762