Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
来源
Advances in Difference Equations | / 2016卷
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Oscillation analysis of a forced fractional order sum-difference equations
    Alzabut, Jehad
    Selvam, A. George Maria
    Janagaraj, R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 1600, 0 (01): : 0375-9237 - 2357-0350
  • [12] Oscillation analysis of a forced fractional order sum-difference equations
    Alzabut, Jehad
    Selvam, A. George Maria
    Janagaraj, R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 37 (02): : 214 - 225
  • [13] Oscillation properties for solutions of a kind of partial fractional differential equations with damping term
    Li, Wei Nian
    Sheng, Weihong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1600 - 1608
  • [14] OSCILLATION CRITERIA FOR A CLASS OF NONLINEAR DISCRETE FRACTIONAL ORDER EQUATIONS WITH DAMPING TERM
    Chatzarakis, George E.
    Selvam, George M.
    Janagaraj, Rajendran
    Miliaras, George N.
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1165 - 1182
  • [15] The oscillation of certain difference equations
    Agarwal, RP
    Grace, SR
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (1-2) : 53 - 66
  • [16] Oscillation of certain difference equations
    Agarwal, RP
    Grace, SR
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (08) : 1 - 8
  • [17] Oscillation of certain nonlinear fractional partial differential equation with damping term
    Prakash, P.
    Harikrishnan, S.
    Benchohra, M.
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 72 - 79
  • [18] Forced oscillation for solutions of boundary value problems of fractional partial difference equations
    Li, Wei Nian
    Sheng, Weihong
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [19] Forced oscillation for solutions of boundary value problems of fractional partial difference equations
    Wei Nian Li
    Weihong Sheng
    Advances in Difference Equations, 2016
  • [20] OSCILLATION THEOREMS FOR CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH DAMPING
    Can, Engin
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S695 - S702