Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
来源
Advances in Difference Equations | / 2016卷
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Oscillation results for certain forced fractional difference equations with damping term
    Li, Wei Nian
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Forced Oscillation of Nonlinear Fractional Delay Differential Equations with Damping Term
    Zhu, Si-ying
    Li, Hui-juan
    Liu, An-ping
    2018 2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2018), 2018, 305 : 43 - 51
  • [3] NEW RESULTS FOR OSCILLATION OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS WITH DAMPING TERM
    Luo, Liping
    Luo, Zhenguo
    Zeng, Yunhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09): : 3223 - 3231
  • [4] Forced Oscillation of a Certain System of Fractional Partial Differential Equations
    Ramesh, R.
    Prakash, P.
    Harikrishnan, S.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2021, 10 (04) : 607 - 615
  • [5] On the Oscillation of Non-Linear Fractional Difference Equations with Damping
    Alzabut, Jehad
    Muthulakshmi, Velu
    Ozbekler, Abdullah
    Adigilzel, Hakan
    MATHEMATICS, 2019, 7 (08)
  • [6] Oscillation for a Class of Fractional Differential Equations with Damping Term in the Sense of the Conformable Fractional Derivative
    Feng, Qinghua
    ENGINEERING LETTERS, 2022, 30 (01) : 311 - 317
  • [7] A certain class of fractional difference equations with damping: Oscillatory properties
    Arundhathi, Sivakumar
    Alzabut, Jehad
    Muthulakshmi, Velu
    Adiguezel, Hakan
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [8] Oscillation Theorems for Certain Forced Nonlinear Discrete Fractional Order Equations
    Chatzarakis, George E.
    Selvam, A. George Maria
    Janagaraj, R.
    Douka, Maria
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 763 - 772
  • [9] Oscillation Theorems for a Class of Forced Non-Linear Discrete Equations of Fractional Order with Damping Term
    Selvam, A. George Maria
    Jacintha, Mary
    Janagaraj, R.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019), 2020, 2246
  • [10] ON THE OSCILLATION OF CERTAIN THIRD ORDER NONLINEAR DYNAMIC EQUATIONS WITH A NONLINEAR DAMPING TERM
    Grace, Said R.
    Graef, John R.
    Tunc, Ercan
    MATHEMATICA SLOVACA, 2017, 67 (02) : 501 - 508