Stochastic Maximum Principle for Optimal Control of SPDEs

被引:0
作者
Marco Fuhrman
Ying Hu
Gianmario Tessitore
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Université Rennes 1,IRMAR
[3] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
来源
Applied Mathematics & Optimization | 2013年 / 68卷
关键词
Stochastic maximum principle; Stochastic partial differential equation; Optimal control; Adjoint process;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a stochastic partial differential equation driven by a finite dimensional Wiener process. The equation is formulated in a semi-abstract form that allows direct applications to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient dependent on the control parameter, and the space of control actions is general, so that in particular we need to introduce two adjoint processes. The second adjoint process takes values in a suitable space of operators on L4.
引用
收藏
页码:181 / 217
页数:36
相关论文
共 21 条
  • [1] Bensoussan A.(1983)Stochastic maximum principle for distributed parameter systems J. Franklin Inst. 315 387-406
  • [2] Fuhrman M.(2012)Stochastic maximum principle for optimal control of SPDEs C. R. Math. Acad. Sci. Paris 350 683-688
  • [3] Hu Y.(2011)Stochastic maximum principle for SPDEs with noise and control on the boundary Syst. Control Lett. 60 198-204
  • [4] Tessitore G.(2005)On the backward stochastic Riccati equation in infinite dimensions SIAM J. Control Optim. 44 159-194
  • [5] Guatteri G.(1991)Adapted solution of a backward semilinear stochastic evolution equation Stoch. Anal. Appl. 9 445-459
  • [6] Guatteri G.(1990)Maximum principle for semilinear stochastic evolution control systems Stoch. Stoch. Rep. 33 159-180
  • [7] Tessitore G.(2011)Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations Adv. Appl. Probab. 43 572-596
  • [8] Hu Y.(1990)A general stochastic maximum principle for optimal control problems SIAM J. Control Optim. 28 966-979
  • [9] Peng S.(1992)Some remarks on the Riccati equation arising in an optimal control problem with state- and control-dependent noise SIAM J. Control Optim. 30 717-744
  • [10] Hu Y.(1996)Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE Stoch. Anal. Appl. 14 461-486