Kernel embedding of measures and low-rank approximation of integral operators

被引:0
|
作者
Gauthier, Bertrand [1 ]
机构
[1] Cardiff Univ, Sch Math, Abacws,Senghennydd Rd, Cardiff CF24 4AG, Wales
关键词
Reproducing kernel Hilbert spaces; Integral operators; Low-rank approximation; Kernel embedding of measures; Differentiable relaxation; NYSTROM METHOD; METRICS;
D O I
10.1007/s11117-024-01041-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a natural coisometry from the Hilbert space of all Hilbert-Schmidt operators on a separable reproducing kernel Hilbert space (RKHS) H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox { (RKHS)}\, \mathcal {H}$$\end{document} and onto the RKHS G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} associated with the squared-modulus of the reproducing kernel of H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} . Through this coisometry, trace-class integral operators defined by general measures and the reproducing kernel of H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} are isometrically represented as potentials in G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} , and the quadrature approximation of these operators is equivalent to the approximation of integral functionals on G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} . We then discuss the extent to which the approximation of potentials in RKHSs with squared-modulus kernels can be regarded as a differentiable surrogate for the characterisation of low-rank approximation of integral operators.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Huan Ren
    Ru-Ru Ma
    Qiaohua Liu
    Zheng-Jian Bai
    Journal of Scientific Computing, 2022, 92
  • [32] Low-rank approximation of tensors via sparse optimization
    Wang, Xiaofei
    Navasca, Carmeliza
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (02)
  • [33] Linear low-rank approximation and nonlinear dimensionality reduction
    Zhang, ZY
    Zha, HY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (06): : 908 - 920
  • [34] RANDOMIZED LOW-RANK APPROXIMATION OF MONOTONE MATRIX FUNCTIONS
    Persson, David
    Kressner, Daniel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 894 - 918
  • [35] Low-Rank Approximation based LineCast for Video Broadcasting
    Yin, Wenbin
    Fan, Xiaopeng
    Shi, Yunhui
    Zhao, Debin
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [36] Low-rank approximation to entangled multipartite quantum systems
    Lin, Matthew M.
    Chu, Moody T.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [37] Linear low-rank approximation and nonlinear dimensionality reduction
    ZHANG Zhenyue & ZHA Hongyuan Department of Mathematics
    Department of Computer Science and Engineering
    Science China Mathematics, 2004, (06) : 908 - 920
  • [38] A LOW-RANK APPROXIMATION FOR COMPUTING THE MATRIX EXPONENTIAL NORM
    Nechepurenko, Yuri M.
    Sadkane, Miloud
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 349 - 363
  • [39] FACTORIZATION APPROACH TO STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS
    Ishteva, Mariya
    Usevich, Konstantin
    Markovsky, Ivan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) : 1180 - 1204
  • [40] CP DECOMPOSITION AND LOW-RANK APPROXIMATION OF ANTISYMMETRIC TENSORS
    Kovac, Erna Begovic
    Perisa, Lana
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 62 : 72 - 94