Kernel embedding of measures and low-rank approximation of integral operators

被引:0
|
作者
Gauthier, Bertrand [1 ]
机构
[1] Cardiff Univ, Sch Math, Abacws,Senghennydd Rd, Cardiff CF24 4AG, Wales
关键词
Reproducing kernel Hilbert spaces; Integral operators; Low-rank approximation; Kernel embedding of measures; Differentiable relaxation; NYSTROM METHOD; METRICS;
D O I
10.1007/s11117-024-01041-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a natural coisometry from the Hilbert space of all Hilbert-Schmidt operators on a separable reproducing kernel Hilbert space (RKHS) H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox { (RKHS)}\, \mathcal {H}$$\end{document} and onto the RKHS G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} associated with the squared-modulus of the reproducing kernel of H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} . Through this coisometry, trace-class integral operators defined by general measures and the reproducing kernel of H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} are isometrically represented as potentials in G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} , and the quadrature approximation of these operators is equivalent to the approximation of integral functionals on G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} . We then discuss the extent to which the approximation of potentials in RKHSs with squared-modulus kernels can be regarded as a differentiable surrogate for the characterisation of low-rank approximation of integral operators.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Adaptive low-rank approximation of collocation matrices
    Bebendorf, M
    Rjasanow, S
    COMPUTING, 2003, 70 (01) : 1 - 24
  • [22] On the low-rank approximation by the pivoted Cholesky decomposition
    Harbrecht, Helmut
    Peters, Michael
    Schneider, Reinhold
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 428 - 440
  • [23] Software for weighted structured low-rank approximation
    Markovsky, Ivan
    Usevich, Konstantin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 278 - 292
  • [24] lp-norm multiple kernel learning with low-rank kernels
    Rakotomamonjy, Alain
    Chanda, Sukalpa
    NEUROCOMPUTING, 2014, 143 : 68 - 79
  • [25] Integrating Low-rank Approximation and Word Embedding for Feature Transformation in the High-dimensional Text Classification
    Le Nguyen Hoai Nam
    Ho Bao Quoc
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 : 437 - 446
  • [26] Data-driven linear complexity low-rank approximation of general kernel matrices: A geometric approach
    Cai, Difeng
    Chow, Edmond
    Xi, Yuanzhe
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (06)
  • [27] A MULTILINEAR NYSTROM ALGORITHM FOR LOW-RANK APPROXIMATION OF TENSORS IN TUCKER FORMAT
    Bucci, Alberto
    Robol, Leonardo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) : 1929 - 1953
  • [28] Krylov Methods are (nearly) Optimal for Low-Rank Approximation
    Bakshi, Ainesh
    Narayanan, Shyam
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 2093 - 2101
  • [29] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Ren, Huan
    Ma, Ru-Ru
    Liu, Qiaohua
    Bai, Zheng-Jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [30] CONSTANT MODULUS BEAMFORMING VIA LOW-RANK APPROXIMATION
    Adler, Amir
    Wax, Mati
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 776 - 780