On the Spectral Form Factor for Random Matrices

被引:0
|
作者
Giorgio Cipolloni
László Erdős
Dominik Schröder
机构
[1] Princeton University,Princeton Center for Theoretical Science
[2] IST Austria,Institute for Theoretical Studies
[3] ETH Zurich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the physics literature the spectral form factor (SFF), the squared Fourier transform of the empirical eigenvalue density, is the most common tool to test universality for disordered quantum systems, yet previous mathematical results have been restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021. https://doi.org/10.1007/s10955-021-02767-5, Commun Math Phys 387:215–235, 2021. https://doi.org/10.1007/s00220-021-04193-w). We rigorously prove the physics prediction on SFF up to an intermediate time scale for a large class of random matrices using a robust method, the multi-resolvent local laws. Beyond Wigner matrices we also consider the monoparametric ensemble and prove that universality of SFF can already be triggered by a single random parameter, supplementing the recently proven Wigner–Dyson universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10.1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime, as customarily called in physics.
引用
收藏
页码:1665 / 1700
页数:35
相关论文
共 50 条
  • [41] On spectral and numerical properties of random butterfly matrices
    Trogdon, Thomas
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 48 - 58
  • [42] Random incidence matrices: Moments of the spectral density
    Bauer, M
    Golinelli, O
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) : 301 - 337
  • [43] THE SPECTRAL-RADIUS OF LARGE RANDOM MATRICES
    GEMAN, S
    ANNALS OF PROBABILITY, 1986, 14 (04): : 1318 - 1328
  • [44] Local spectral statistics of the addition of random matrices
    Ziliang Che
    Benjamin Landon
    Probability Theory and Related Fields, 2019, 175 : 579 - 654
  • [45] Precise asymptotics on spectral statistics of random matrices
    Xie, Junshan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (02) : 293 - 302
  • [46] Statistical Spectral Analysis of Random Gramian Matrices
    Macagnano, Davide
    de Abreu, Giuseppe Thadeu Freitas
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 1802 - 1806
  • [47] A spectral dominance approach to large random matrices
    Bertucci, Charles
    Debbah, Merouane
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 : 27 - 56
  • [48] INVERSE SPECTRAL THEORY FOR RANDOM JACOBI MATRICES
    CARMONA, R
    KOTANI, S
    JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) : 1091 - 1114
  • [49] UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF RANDOM MATRICES
    Erados, Laszlo
    Yau, Horng-Tzer
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 377 - 414
  • [50] Local spectral statistics of the addition of random matrices
    Che, Ziliang
    Landon, Benjamin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (1-2) : 579 - 654