On the Spectral Form Factor for Random Matrices

被引:0
|
作者
Giorgio Cipolloni
László Erdős
Dominik Schröder
机构
[1] Princeton University,Princeton Center for Theoretical Science
[2] IST Austria,Institute for Theoretical Studies
[3] ETH Zurich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the physics literature the spectral form factor (SFF), the squared Fourier transform of the empirical eigenvalue density, is the most common tool to test universality for disordered quantum systems, yet previous mathematical results have been restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021. https://doi.org/10.1007/s10955-021-02767-5, Commun Math Phys 387:215–235, 2021. https://doi.org/10.1007/s00220-021-04193-w). We rigorously prove the physics prediction on SFF up to an intermediate time scale for a large class of random matrices using a robust method, the multi-resolvent local laws. Beyond Wigner matrices we also consider the monoparametric ensemble and prove that universality of SFF can already be triggered by a single random parameter, supplementing the recently proven Wigner–Dyson universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10.1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime, as customarily called in physics.
引用
收藏
页码:1665 / 1700
页数:35
相关论文
共 50 条
  • [31] SPECTRAL PROPERTIES OF RANDOM TRIANGULAR MATRICES
    Basu, Riddhipratim
    Bose, Arup
    Ganguly, Shirshendu
    Hazra, Rajat Subhra
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (03)
  • [32] Spectral statistics of random Toeplitz matrices
    Bogomolny, Eugene
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [33] ON SPECTRAL MEASURES OF RANDOM JACOBI MATRICES
    Trinh Khanh Duy
    OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (04) : 595 - 617
  • [34] Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits
    Bertini, Bruno
    Kos, Pavel
    Prosen, Tomaz
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (01) : 597 - 620
  • [35] Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits
    Bruno Bertini
    Pavel Kos
    Tomaž Prosen
    Communications in Mathematical Physics, 2021, 387 : 597 - 620
  • [37] Spectral convergence for a general class of random matrices
    Rubio, Francisco
    Mestre, Xavier
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 592 - 602
  • [38] The spectral boundary of block structured random matrices
    Patil, Nirbhay
    Aguirre-Lopez, Fabian
    Bouchaud, Jean-Philippe
    JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (03):
  • [39] Spectral norm of products of random and deterministic matrices
    Vershynin, Roman
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) : 471 - 509
  • [40] Statistical spectral analysis of random Gramian matrices
    Centre for Wireless Communications, University of Oulu, P.O.Box 4500, 90014, Finland
    Conf. Rec. Asilomar Conf. Signals Syst. Comput., (1802-1806):